TS3000 Series Robot Controller

TS3000 SCARA / LINEAR system TS3100 SCARA / LINEAR / 6-AXIS system

INSTRUCTION MANUAL

SIMPLE PLC FUNCTION MANUAL

Notice

- Make sure that this instruction manual is delivered to the final user of Toshiba Machine's industrial robot.
- Before operating the industrial robot, read through and completely understand this manual.
- After reading through this manual, keep it nearby for future reference.

TOSHIBA MACHINE CO., LTD.

Copyright 2008 by Toshiba Machine Co., Ltd. All rights reserved.

No part of this document may be reproduced in any form without obtaining prior written permission from Toshiba Machine Co., Ltd.

The information contained in this manual is subject to change without prior notice to effect improvements.

Preface

Structure of TH series robot and TS3000 controller instruction manuals:

These instruction manuals were published in parts according to the application and purpose, and the name and outline of each manual are as follows:

[Safety Manual]

This manual contains the important information to use the robot safety and correctly. Be sure to read through and understand this manual before operating the robot. Also, strictly observe the descriptions made there.

[Setup Manual]

This manual describes the procedures covering from power ON of the robot after installation to robot operation by manual guide. When you use the TH series robot for the first time, be sure to read through this manual.

[Operator's Manual]

This manual deals with the TS3000 controller operating procedures. Read through this manual before operating the robot, and refer to it as necessary.

[Robot Language Manual]

This manual refers to the robot language called "SCOL". When you have to create a program based on this language, read through the manual.

[Interface Manual]

This manual describes the external signals for the robot. Concerning the interface conditions between the robot and peripheral equipment, specifications, timing, etc., refer to the manual when necessary.

[Installation & Transport Manual]

This manual describes the transport, unpacking and installation of the robot and controller. Be sure to read through this manual before unpacking the shipment containing the robot.

[Maintenance Manual]

This manual deals with the daily and regular inspections to be made on the robot and controller. Read through this manual to use the robot safely over long years to come.

[Communication Manual]

This manual describes the serial communication between the robot controller and other equipment. Refer to this manual when connecting the robot controller with a host computer, optical sensor, etc., via a serial cable.

[User Parameter Manual]

This manual describes the setting of the robot controller. Read this manual when performing the setting of communication, I/O, motion condition, etc.

Cautions on Safety

This manual contains the important information on the robot and controller to prevent injury to the operators and persons nearby, to prevent damage to assets and to assure correct use.

Make sure that the following details (indications and symbols) are well understood before reading this manual. Always observe the information that is noted.

[Explanation of indications]

Indication	Meaning of indication
DANGER	This means that "incorrect handling will lead to fatalities or serious injuries."
CAUTION	This means that "incorrect handling may lead to personal injuries *1) or physical damage *2).

- *1) Injuries refer to injuries, burns and electric shocks, etc., which do not require hospitalization or long-term medical treatment.
- *2) Physical damage refers to damages due to destruction of assets or resources.

[Explanation of symbols]

Symbol	Meaning of symbol
	This means that the action is prohibited (must not be done). Details of the actions actually prohibited are indicated with pictures or words in or near the symbol.
0	This means that the action is mandatory (must be done). Details of the actions that must be done are indicated with pictures or words in or near the symbol.
	This means danger. Details of the actual danger are indicated with pictures or words in or near the symbol.
\triangle	This means caution. Details of the actual caution are indicated with pictures or words in or near the symbol.

[Operation]

DANGER

- During operation, NEVER enter the dangerous area of the robot.
 Otherwise, you will be injured seriously.
- DO NOT leave in the working range any machinery or materials which will hinder the operation. If the equipment went wrong, a person nearby will be injured or involved in an accident.
- Anyone other than the operator MUST NOT approach the equipment. Should he negligently touch the dangerous part of the equipment, he will get injured or involved in a serious accident.
- NEVER perform an inappropriate operation which is not described in the instruction manual. Otherwise, the equipment will start by mistake, resulting in personal injury or serious accident.

- If you feel even a little that you are exposed to danger or that the equipment works abnormally, press the EMERGENCY stop pushbutton switch to stop the equipment. If the equipment is used as it is, you will be injured or involved in a serious accident. When this happens, ask our after-sale service agent for repair.
- During operation, be sure to close the equipment cover. Should the cover be opened during operation, you will be struck by an electric shock or get injured.
- Only a well-trained and qualified person is allowed to perform the operation. Should the equipment be operated improperly, it will start by mistake, causing a personal injury or serious accident.
- If the equipment has malfunctioned, turn the power off, identify
 and remove the cause of the abnormality, maintain the peripheral
 equipment and completely restore the malfunctioned equipment.
 Then start the equipment at a slow speed. If the equipment
 starts, leaving the abnormality, you will be involved in a serious
 accident.

CAUTION

DO NOT change the data of the system structure file.
 Otherwise, the robot will move abnormally, resulting in damage or an accident.

- In principle, teaching operation should be performed outside the dangerous area of the robot. If it should be performed inevitably within the dangerous area, strictly observe the following matters.
 - (1) The teaching operation should always be performed by two (2) persons. One person performs the job and the other person watches outside the dangerous area. Also, both persons should try to prevent mis-operation with each other.
 - (2) The operator should do the job in an attitude ready to press the EMERGENCY stop pushbutton switch at any time. Also, he should perform the job at a position from which he can evacuate immediately at the time of an emergency after confirming the robot working range and shields nearby.
 - (3) The supervisor should keep watch on the job at a position where he can see the entire robot system and operate the EMERGENCY stop pushbutton switch at the time of an emergency. Also, he should keep anyone from entering the dangerous area. Unless the operator or other person follows the instructions of the supervisor, an accident will be caused.
- If an abnormality has generated or the POWER LED lamp on the control panel remains off after the main power switch of the equipment was turned on, turn off the main power immediately and confirm the wiring. Otherwise, you will be struck by an electric shock or a fire will break out.
- Unless the robot operates toward a designated direction at manual guide, turn off the servo power. Otherwise, the robot will be damaged or you will be involved in an accident. When this happens, call us at the after-sale service agent.
- Pushbutton operations on the control panel and teach pendant should be confirmed visually. Otherwise, you will be involved in an accident due to mis-operation.
- After the power is turned on, be sure to reset a program to start an automatic operation. If the program is executed continuously, the robot will interfere with the peripheral equipment, resulting in damages or accidents.

CAUTION

- Before operating the equipment, perform the following inspection.
 - (1) Make sure that visual appearance of the robot, controller, peripheral equipment and cables is in the good condition.
 - (2) Make sure that no obstacle stands in or near the working range of the robot and peripheral equipment.
 - (3) Make sure that the emergency stop and other safety devices operate properly.
 - (4) Make sure that no abnormal noise or vibration is involved in the robot operation.

If the above prior inspection is skipped, the equipment will be damaged or you will be involved in an accident.

Caution

- The speed of test operations is initially set at 25% of the maximum robot speed.
- The speed of automatic operation is initially set at 100% of the maximum robot speed.

Table of Contents

			Page
Section 1	Ge	neral Descriptions	1-1
Section 2	TC	mini	2-1
2.1	Sequence Program		
2.2	Instruc	tion Words	2-3
2.3	Systen	n Sequence and User Sequence	2-4
2.4	Chang	e of Sequence Program Area	2-5
2.5	Proced	dures for Creating Sequence	2-6
Section 3	Inp	uts and Outputs	3-1
3.1	Outline	e of Inputs and Outputs	3-1
3.2	Extern	al Input and output (Type N)	3-2
3.3	Extern	al Input and output (Type P)	3-8
3.4	Panel	I/Os	3-14
3.5	7-Segr	ment User Display	3-14
3.6	Extens	sion Input and Output (Option)	3-15
	3.6.1	Outline of TR48DIOCN/TR48DIOC	3-15
	3.6.2	Connecting TR48DIOCN/TR48DIOC	3-16
	3.6.3	Setting of TR48DIOCN/TR48DIOC	3-17
	3.6.4	TR48DIOCN Input and Output	3-20
	3.6.5	TR48DIOC Input and Output	3-24
	3.6.6	Remote I/O Module	3-27
3.7	Field E	Bus Input and Output (Option)	3-29
Section 4	Re	lays	4-1
4.1		Output Relays	4-1
4.2	Interna	al Relay	4-3
4.3	Interface Relay		
4.4	Edge Relay		4-7
4.5	Latch Relay4		
4.6	Timer/	Counter	4-8
4.7	Special Auxiliary Relay4		

		Page
Section 5	Registers	5-1
5.1	Data Register	5-1
5.2	Interface Register	5-3
5.3	Timer/Counter Current Value Register	5-4
5.4	Timer/Counter Set Value Register	5-5
Section 6	Robot Interface	6-1
6.1	TCmini → Main Unit of Robot Controller	6-2
	DIN1 ~ 64, DIN101 ~ 164, DIN301 ~ 364, DIN401 ~ 464	
	(Digital Input Signal)	6-4
	HANDIN1~8 (Hand Input Signal)	6-5
	AL8-269~272 (Alarm Level 8)	6-6
	AL4-077~080 (Alarm Level 4)	6-6
	AL1-037~044 (Alarm Level 1)	6-6
	STROBE (Strobe Signal)	6-8
	PRG_RST (Program Reset)	6-10
	STEP_RST (Step Reset)	6-11
	CYC_RST (Cycle Reset)	6-12
	DO_RST (Output Signal Reset)	6-13
	ALM_RST (Alarm Reset)	6-14
	RUN (Start)	6-15
	EX_SVON (External Servo ON)	6-16
	STOP (Stop)	6-17
	CYCLE (Cycle Operation Mode)	6-18
	LOW_SPD (Low Speed Command)	6-19
	BREAK (Deceleration and Stop)	6-20
	SVOFF (Servo OFF)	6-21

		Page
6.2	Main Unit of Robot Controller → TCmini	6-22
	DOUT1 ~ 64, DOUT101 ~ 164, DOUT301 ~ 364, DOUT401 ~ 464	6-24
	HANDOUT1 ~ 8	6-25
	SEQPAR1 ~ 8	6-26
	EMG_ST	6-27
	SV_RDY	6-28
	ACK (Acknowledge)	6-29
	TEACH (Teach Mode ON)	6-30
	INT (Internal Automatic Mode ON)	6-30
	EXTSIG (External Automatic Signal Mode ON)	6-30
	EXT 232C (External automatic 232C Host Mode ON)	6-30
	EXT ETHER (External ETHER Host Mode ON)	6-30
	SYS_RDY (System Ready)	6-31
	AUTORUN (Auto Mode ON)	6-32
	CYC_END (Cycle End)	6-33
	LOW_ST (Low Speed Mode ON)	6-34
	CYC_ST (Cycle Mode ON)	6-35
	BT_ALM (Battery Alarm)	6-36
	ALARM (Alarm)	6-37
6.3	Interface Register	6-38
	STEP	6-39
	ALNO, AL01 ~ AL10	6-39
	USER	6-39
	PLCDATAR1 ~ 8	6-40
	PLCDATAW1 ~ 8	6-40
	PSN_W1 ~ 8	6-41
	PSN_J1 ~ 8	6-41
	TRQ_J1 ~ 8	6-41

			Page
Section 7	PLC	Language	7-1
7.1	Sequen	ice Program	7-1
7.2	Progran	m Capacity and Length of Instruction Word	7-3
7.3	Address	S	7-6
7.4	Configu	ration of Instruction Word	7-12
	7.4.1	Contact	7-14
	7.4.2	Unconditional Connection	7-14
	7.4.3	Blank	7-15
	7.4.4	Internal Relay	7-15
	7.4.5	Latch Relay	7-16
	7.4.6	Timer	7-17
	7.4.7	Counter	7-19
7.5		rd Application Instruction	7-21
	7.5.1	Selection of Executing Condition	7-21
	7.5.2	Arbitrary Setting of Argument	7-21
	7.5.3	Numeric Expression	7-22
	7.5.4	Operation Flag	7-29
	7.5.5 7.5.6	Order of Execution	7-33 7-34
	F*000	Descriptions on Standard Application Instruction Data Transfer	7-34 7-34
	F*001	Constant Set	7-36
	F*002	High-Order 8-Bit Data Transfer	7-37
	F*006	Block Transfer (Constant Designation)	7-38
	F*009	Data Extraction and Distribution	7-40
	F*010	$BIN \to BCD$ Conversion (Unsigned)	7-41
	F*011	$BCD \to BIN$ Conversion (Unsigned)	7-42
	F*012	$BIN \to BCD \ Conversion \ (Signed) \dots \dots$	7-43
	F*013	$BCD \to BIN$ Conversion (Signed)	7-44
	F*020	BIN Addition	7-46
	F*021	Carried BIN Addition	7-47
	F*022	BIN Subtraction	7-48

7.6

		Page
F*023	Borrowed BIN Subtraction	7-50
F*024	Unsigned BIN Multiplication	7-51
F*025	Unsigned BIN Division	7-52
F*032	Logical Product (AND)	7-54
F*033	Logical Sum (OR)	7-55
F*034	Exclusive Logical Sum (XOR)	7-56
F*035	Increment	7-57
F*036	Decrement	7-57
F*037	Unsigned Comparison	7-58
F*038	Signed Comparison	7-59
F*040	Arithmetic Left Shift	7-61
F*041	Left rotation	7-62
F*042	Right Shift	7-64
F*043	Right Rotation	7-65
F*045	4 → 16 Decoder	7-67
F*047	Bit Test (Constant Designation)	7-68
F*049	Subroutine Start	7-69
F*058	Subroutine Call	7-71
F*059	Subroutine Return/Program End	7-71
F*063	1-Scan ON	7-72
Progran	nming	7-73
7.6.1	Limitation on Creating Circuit	7-73
7.6.2	Influence by Program Sequence	7-77
7.6.3	Influence by Input/Output Processing	7-79
7.6.4	Promoting Programming Efficiency	7-80

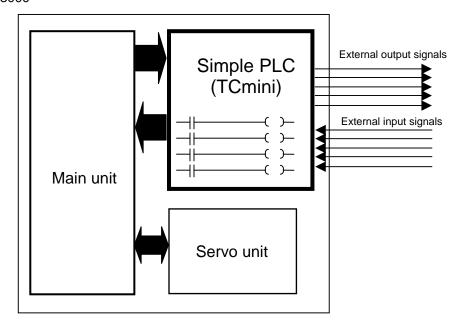
			Page
Section 8	TCF	PRGOS	8-1
8.1		ing Environment of TCPRGOS	8-1
8.2	•	ction	8-2
8.3		Install the TCPRGOS	8-3
8.4		the TCPRGOS	8-5
8.5	_	g a Circuit	8-6
	8.5.1	Start of New Ladder Editor	8-6
	8.5.2	Creation of Circuit	8-8
	8.5.3	Input of Perpendicular Line Symbol	8-11
	8.5.4	Input of Timer in Coil	8-12
	8.5.5	Input of Function Command in Coil	8-14
	8.5.6	Input of Pair Coil	8-17
	8.5.7	Change of Connecting Cine with Contact	8-19
	8.5.8	Renumber of Circuits	8-20
	8.5.9	Saving in File	8-21
	8.5.10	Opening of Existing File	8-23
	8.5.11	Modifying and Saving of Existing Circuit	8-25
8.6	Transfe	erring Circuit	8-28
	8.6.1	Check for Communication Setup	8-28
	8.6.2	Connection	8-29
	8.6.3	Transfer	8-29
8.7	Online	Operation	8-32
	8.7.1	Start Online Ladder Editor	8-32
	8.7.2	Change of Online Ladder Editor Circuit	8-34
8.8	Monito	r	8-37
	8.8.1	Selection of Monitor Mode	8-37
	8.8.2	Designation of PLC RUN or STOP and	
		Compulsive Setting of Contact	8-38
	8.8.3	Quit of Monitor Mode	8-41
8.9	Monitor	ring Register Data	8-43
	8.9.1	Start of Online Register Editor	8-43
	8.9.2	Compulsive Setting of Device	8-44
	8.9.3	Modification of Word Data Specified by Address	8-45

		Page
8.10	Quitting the TCPRGOS	8-46
	8.10.1 Exit from Active Editor	8-46
	8.10.2 Quit of TCPRGOS-W	8-47
8.11	How to Uninstall	8-48
Section 9	Advice of Sequence Program Creation	9-1
9.1	Turning ON/OFF External Output by DOUT Command	9-1
9.2	Input of External Signal by DIN Command	9-1
9.3	Output of AUTORUN Signal to External Device	9-1
9.4	Generating Alarm in TS1000 by External Signal	9-2
9.5	Output of Value to Control Panel	9-2
9.6	Change of Output Destination by Sequence Parameter	9-2
9.7	Circuit Generating 1 Pulse at Power ON	9-3
9.8	Circuit Generating 1 Pulse at Start	9-3
9.9	Circuit Generating 1 Pulse at Fall (1)	9-4
9.10	Circuit Generating 1 Pulse at Fall (2)	9-4
9.11	Self-Holding Circuit (Priority Is Given to Reset)	9-5
9.12	Self-Holding Circuit (Priority Is Given to Set)	9-5
9.13	Interlock Circuit	9-6
9.14	Alternate Circuit	9-6
9.15	Non-Modal Timer Circuit	9-7
9.16	Non-Modal Start Timer Circuit	9-7
9.17	Circuit Turning ON and OFF at Predetermined Intervals	9-8
9.18	Step Sequence Circuit	9-9
Section 1	0 Troubleshooting	10-1
10.1	Robot Servo Will Not Turn ON	10-1
10.2	Program Cannot Run	10-2
10.3	Sequence Program Cannot Be Transferred by TCPRGOS	10-2
10.4	Sequence Program Is Cleared at Power ON	10-2
10.5	TCPRGOS Will Not Start	10-2

			Page
10.6	Extensi	on I/O Does Not Operate (Malfunctions)	10-4
10.7	Sequer	nce-Related Alarm Occurred in TS3000	10-5
	8-227	PLC STOP	10-5
	1-164	PLC Backup data error	10-5
	1-166	PLC Remote unit error	10-6
	1-169	PLC Undefined label	10-6
	1-170	PLC Invalid command	10-6
	1-173	PLC Overlap label	10-6
Section 1	1 App	endix	11-1
	List of F	Relays	11-1
	List of F	Registers	11-8
	Standa	rd ladder seguence program	11-11

Section 1 General Descriptions

Robot controller TS3000 incorporates a simple programmable controller (hereinafter called the "TCmini").

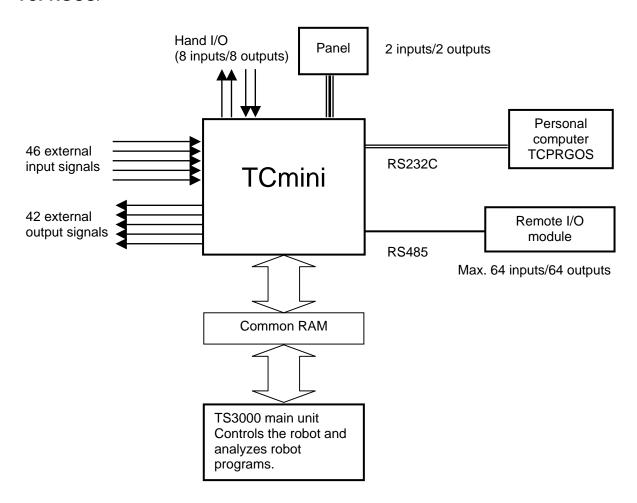

Programs (DOUT commands) analyzed by the main unit and system output signals are once sent to the TCmini where they are processed and output to an external device. The TCmini also receives external input signals and transmits them to the main unit after processing. In other words, the TCmini can unrestrictedly determine the locations where input/output processing of robot programs by the main unit and system signals are to be input or output.

Also, the TCmini can directly respond to (or output) input signals sent from the external device. As the TCmini operates while the TC3000 controller power is turned on, it is capable of performing I/O control, irrespective of robot program execution.

External input/output signals described in the Interface Manual refer to the operation of a standard sequence program. When you create this sequence program, you can design a more flexible system.

This manual deals with the TCmini.

TS3000


Section 2 TCmini

The **TCmini** built in robot controller TS3000 is a simple programmable controller resided in the robot, which can control external I/Os (46 inputs and 42 outputs), hand I/Os (8 inputs and 8 outputs), panel I/Os (2 inputs and 2 outputs) and extension I/Os (64 inputs and 64 outputs).

The TCmini is connected with the TS3000 main unit via common RAM to transfer I/O data and status.

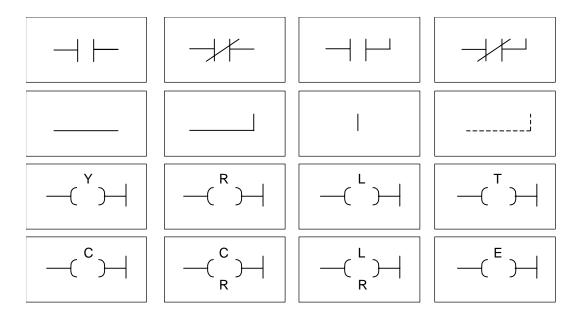
When this TCmini is connected with a remote I/O module via RS485 communication cable (EXTI/O), up to 64 each of inputs and outputs can be connected.

By connecting the TCPRG port (RS232C) on the TS3000 front side with your personal computer, you can create, debug (I/O monitor) and transfer sequence programs, using **TCPRGOS**.

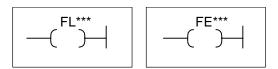
2.1 Sequence Program

Sequence programs of the TCmini use graphical (or ladder) programming.

I/O processing in the TCmini is batch-refreshed. Before arithmetic operation of a sequence program, ON/OFF status of inputs is transferred to the data memory with results of preceding sequence operation transferred to outputs.


After the I/O processing, the sequence program is scanned sequentially from the top.

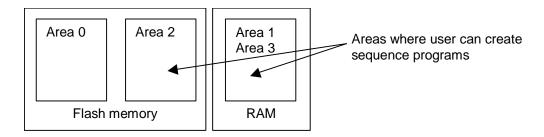
In the TCmini, scanning is executed by the CPU. If the program size increases, it takes more time to scan, resulting in delay of the input and output. Yardstick of the scanning time is about ten (10) msec per 1,000 basic commands (1 K words).


For details on the programming, see Section 7 of this manual.

2.2 Instruction Words

The TCmini can use the following sixteen (16) instruction words.

In the TCmini, thirty-two (32) application instructions (or commands) can be used.


The application instruction comes with the following types.

- Transfer instruction
- Data conversion instruction
- BIN operation instruction
- Comparison instruction
- Bit operation instruction
- Subroutine instruction
- Pulse instruction

For further information on the instructions, see Section 7 of this manual.

2.3 System Sequence and User Sequence

The PLC (TCmini) built in the TS3000 has the following three (3) working areas and the sequence program capacity of each working area is 4 K words. The user can create sequence programs in areas 1 and 2 alone.

- Area 0: Standard sequence area (Cannot be changed.)
- Area 1: User's RAM area for debugging (RAM contents are cleared by power OFF and ON.)
- Area 2: User's flash memory area (The number of writing counts is limited to 50.)
- Area 3: User's RAM area same as Area 1. Due to battery backup, however, no sequence program will be cleared by power OFF and ON.
- * The factory-setting is area 0, and the standard sequence is operating.
- * The flash memory contents will not be cleared by power OFF and ON, but limitation is imposed on the writing counts (50 counts).

Completely debug a sequence program in area 1 (RAM), then transfer it to area 2 (flash memory).

2.4 Change of Sequence Program Area

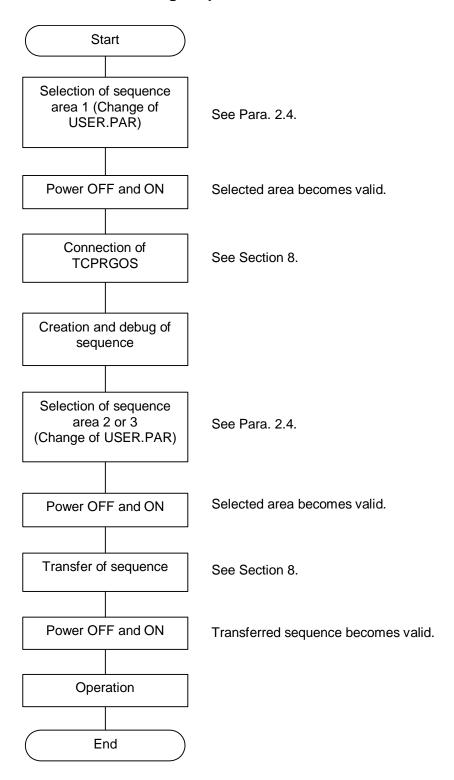
Changeover of working areas is performed by the user parameter.

The sequence to be operated is changed over by changing the set value of [U11] I/O mode of the USER.PAR file to 0, 1, 2 or 3.

[U11] I/O mode (Setting of I/O operation mode)

```
[U11] I/O mode
{Default/User} (0: Default, 1: User RAM, 2: User FLASH 3: User backup RAM)
= 0
```

In the TS3000, I/Os specified in the program are processed for input or output. The storage location of this sequence program can be specified as shown below.

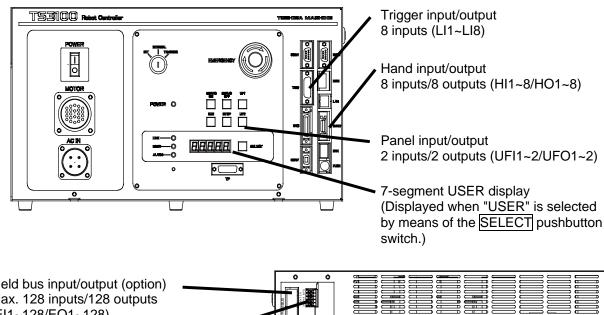

Set value = 0 Standard sequence (Cannot be changed.)

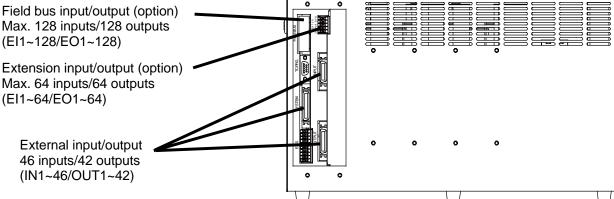
1 User's RAM for debugging (User's created sequence area)

= 2 User's flash memory (User's created sequence area)

= 3 User's RAM for debugging (battery backup) (User's created sequence area)

2.5 Procedures for Creating Sequence

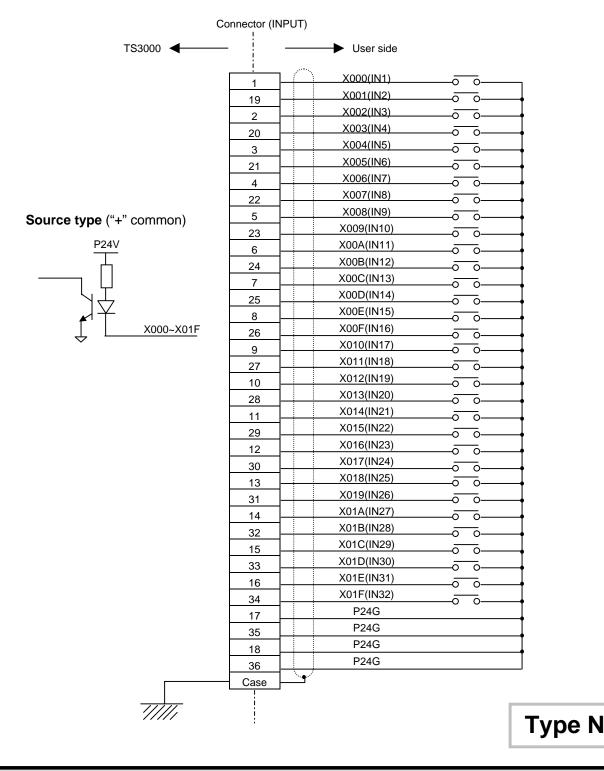


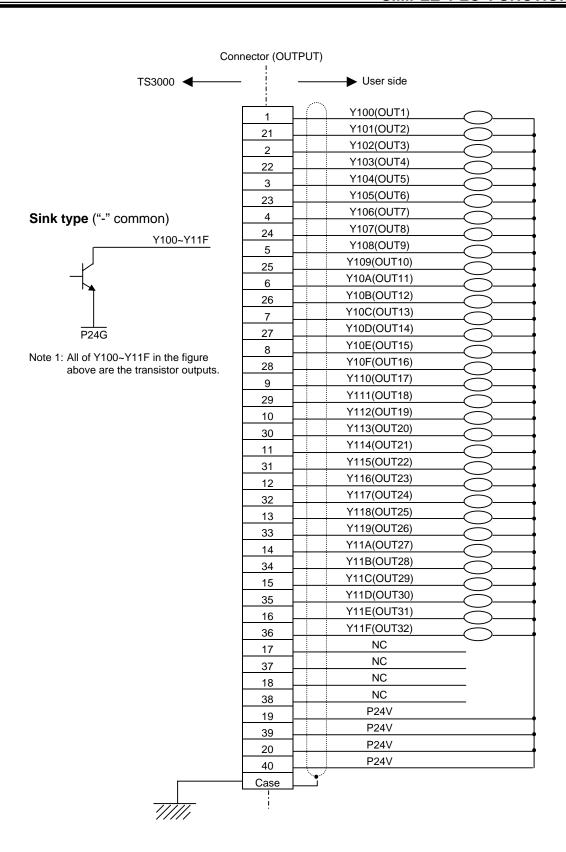

Section 3 Inputs and Outputs

3.1 Outline of Inputs and Outputs

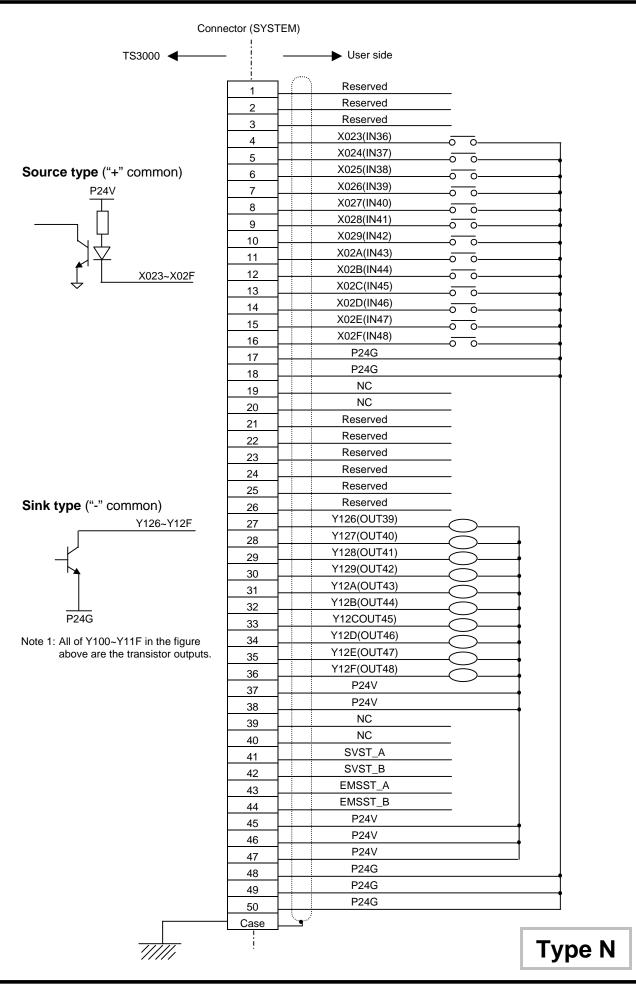
The I/O common for the TS3000 robot controller comes in the two (2) types; **Type N** which is compatible with that of the previous controller (SR7000) and **Type P** which is heteropolar. Either type can be selected at order entry. The extension I/O module is also provided with the two (2) types; TR48DIOCN (Type N) and TR48DIOC (Type P). Identify the type of your controller before reading this manual.

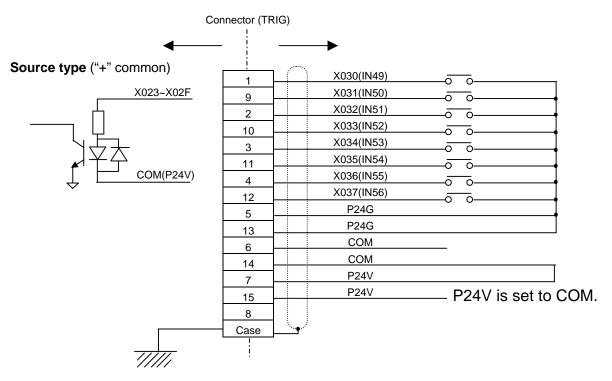
In the TS3000, the input/output signals where sequence control is possible by the TCmini use the input and output ports shown below.

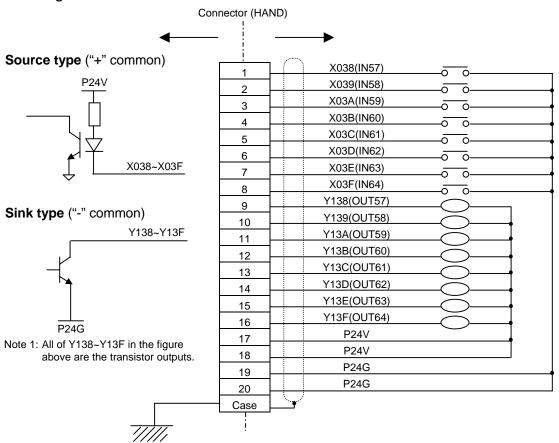




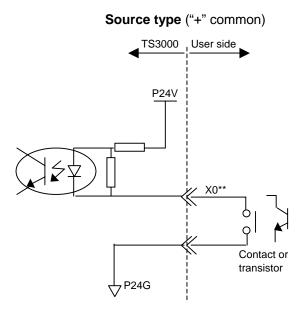
3.2 External Input and Output (Type N)


The external input signals should be connected to connectors INPUT, OUTPUT, SYSTEM, and HAND on the rear side of the controller.


The external signals are assigned to I/O relays X000 ~ X02F, Y100 ~ Y12F of the TCmini, using an attached dummy connector. (For details, see Section 4 of this manual.) To connect them, use the dummy connector attached to the controller.



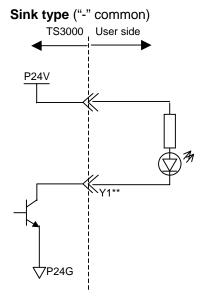
Type N

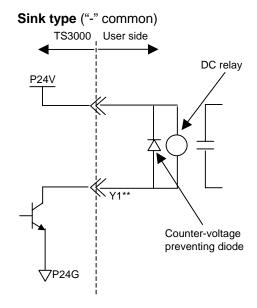

* This is a dedicated trigger input, but it can be referenced from **TCmini**. This can be used when the conveyor synchronization or other function is not being used.

Type N

Specifications of external input signals

- Type of input:
 Non-voltage contact input or transistor open collector input.
- Example of application circuit and structure of input circuit:

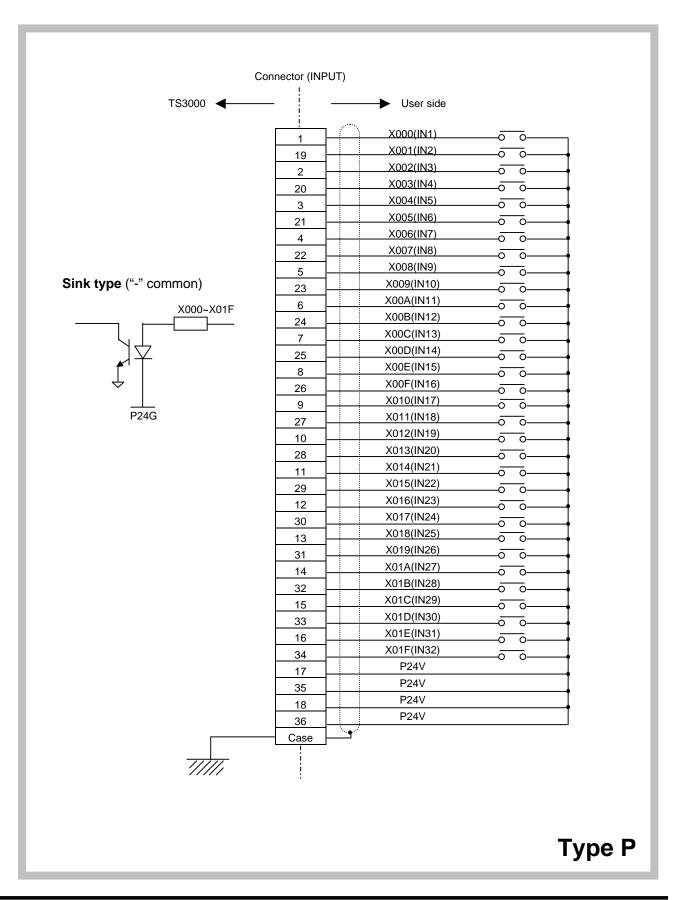

• Contact (transistor) specifications:

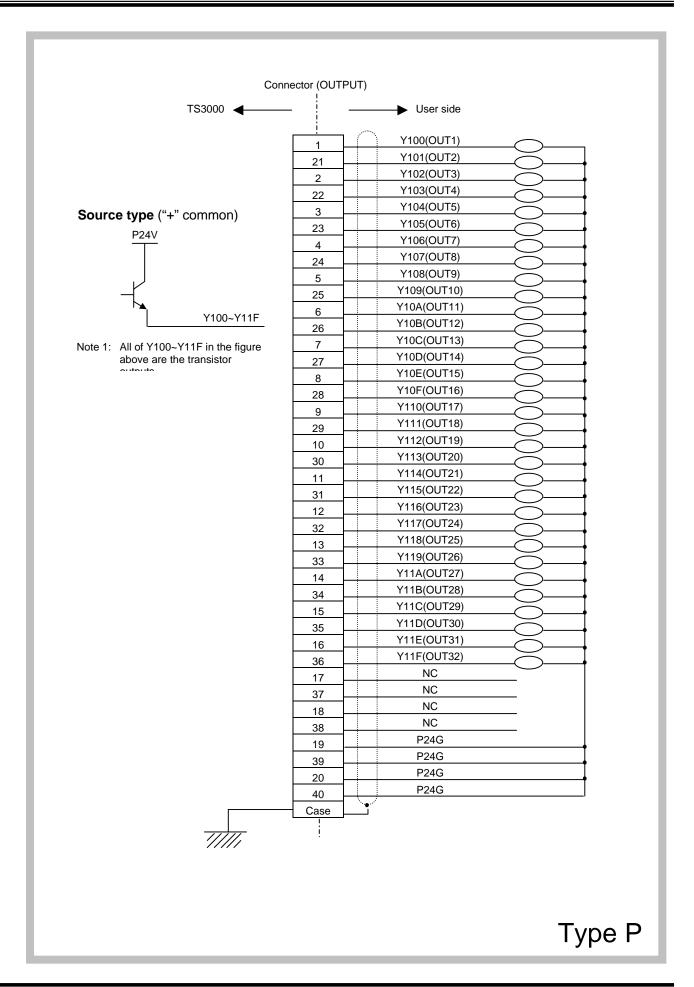

Non-voltage contact specification		Transistor specification
Contact rating	24 VDC, 100 mA or over	Voltage between collector and emitter 30 V or over
Circuit current Minimum current	Approx. 7 mA 24 VDC, 1 mA	Current between collector and emitter 10 mA
Connected impedance		Circuit current Approx. 7 mA
'	100 Ω or less	Leak current between collector and emitter 100 µA

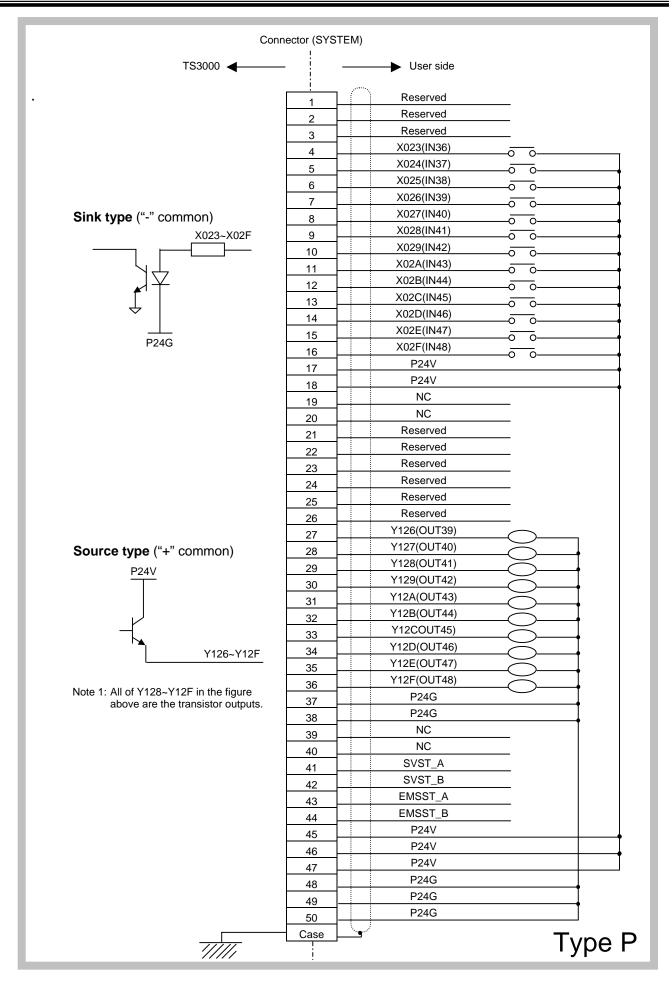
Type N

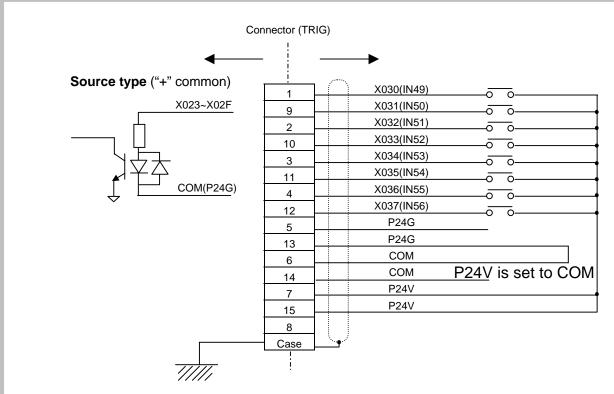
Specifications of external output signals

- Type of output: Transistor output
- Example of application circuit and structure of output circuit:

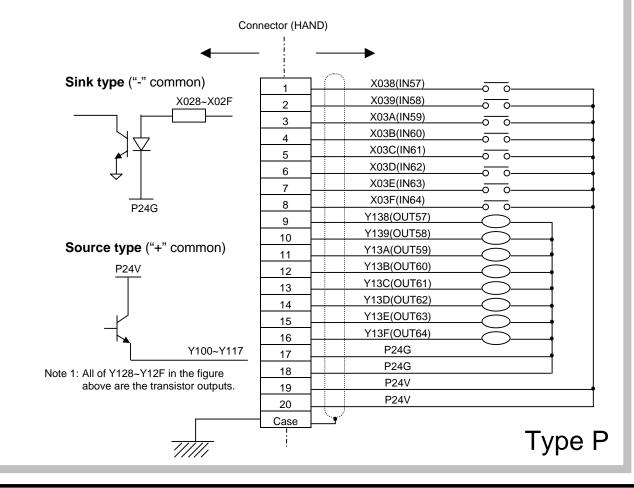

• Electric rating:

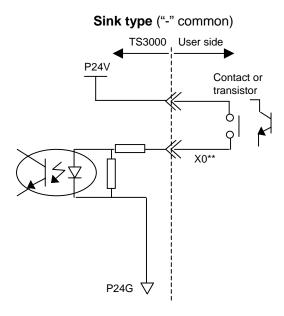

Electric	rating	Caution
Rated voltage 2	24 VDC	If the current which exceeds the rated output
Rated current	100 mA (max.)	current is supplied, the output element may be damaged or the printed board may burn. To avoid this, be sure to use within the rated output current.


• Type of connectors:


INPUT: DHA-PC36-3G (made by DDK)
OUTPUT: DHA-PC40-3G (made by DDK)
SYSTEM: 10150-3000PE (made by 3M)
TRIG: XM2D-1501 (made by OMRON)
HAND: 564306-2019 (made by MOLEX)

3.3 External Input and Output (Type P)

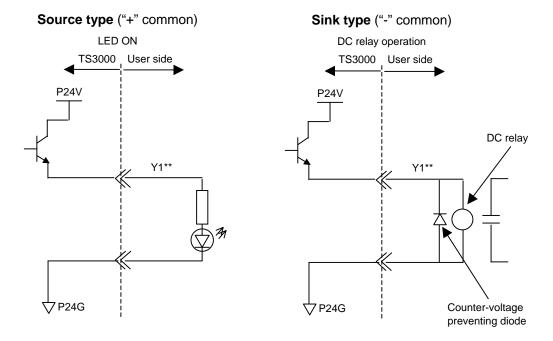




* This is a dedicated trigger input, but it can be referenced from **TCmini**. This can be used when the conveyor synchronization or other function is not being used.

Specifications of external input signals

- Type of input:
 Non-voltage contact input or transistor open collector input.
- Example of application circuit and structure of input circuit:


• Contact (transistor) specifications:

Non-voltage contact specification		Transistor specification
Contact rating	24 VDC, 100 mA or over	Voltage between collector and emitter 30 V or over
Circuit current Minimum current	Approx. 7 mA 24 VDC, 1 mA	Current between collector and emitter 10 mA
Connected impedance		Circuit current Approx. 7 mA
	100 Ω or less	Leak current between collector and emitter 100 µA

Type P

Specifications of external output signals

- Type of output: Transistor output
- Example of application circuit and structure of output circuit:

· Electric rating:

Electric rating		Caution
Rated voltage Rated current	24 VDC 100 mA (max.)	If the current which exceeds the rated output current is supplied, the output element may be damaged or the printed board may burn. To avoid this, be sure to use within the rated output current.

Type of connectors:

INPUT: DHA-PC36-3G (made by DDK)
OUTPUT: DHA-PC40-3G (made by DDK)
SYSTEM: 10150-3000PE (made by 3M)
TRIG: XM2D-1501 (made by OMRON)
HAND: 564306-2019 (made by MOLEX)

Type P

3.4 Panel I/Os

User function switches:

The user can assign a function to each user function switch (UF1, UF2) in the sequence program.

The switches and lamps are assigned to I/O relays X020, X021, Y120 and Y121.

UF1

LED: Y120 (UFO1)

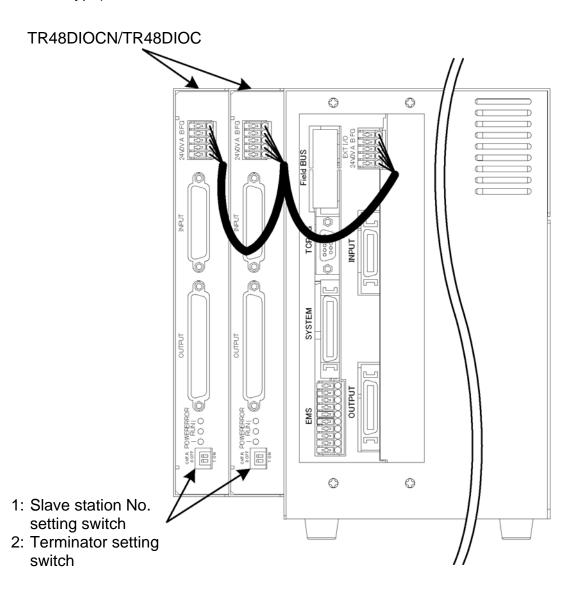
Switch: X020 (UFI1)

UF2

LED: Y121 (UFO2)

Switch: X021 (UFI2)

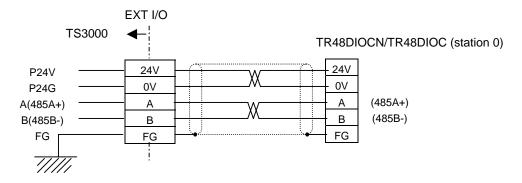
3.5 7-Segment User Display

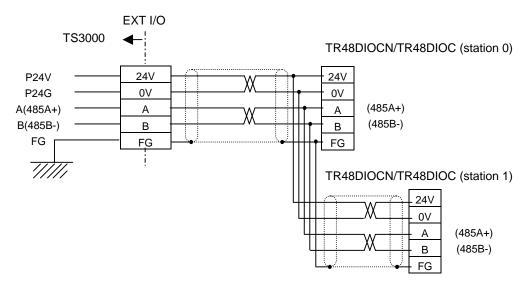

The 7-segment user display can be used while "USER" is selected by means of the SELECT pushbutton switch. The value of data register D470 is displayed there $(0 \sim 65535)$. Any value exceeding this range will not be displayed correctly. (A negative value cannot be displayed.)

3.6 Extension Input and Output (Option)

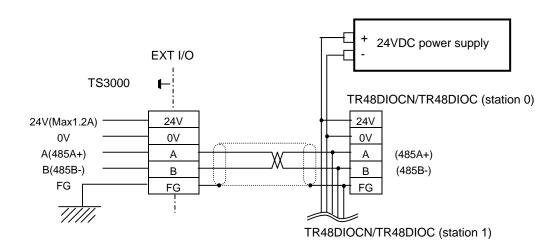
The TCmini can extend I/Os as necessary. TR48DIOCN and TR48DIOC are available as the exclusive I/O extension modules for the TS3000. Also, our standard remote I/O module can be connected.

3.6.1 Outline of TR48DIOCN/TR48DIOC


TR48DIOCN/TR48DIOC are exclusive I/O extension modules for the TS3000, having 28 input signals and 20 output signals, respectively. In the TS3000, up to two (2) stations can be extended, using TR48DIOCN/TR48DIOC modules. TR48DIOCN differs from TR48DIOC in the output specifications (source type/sink type).

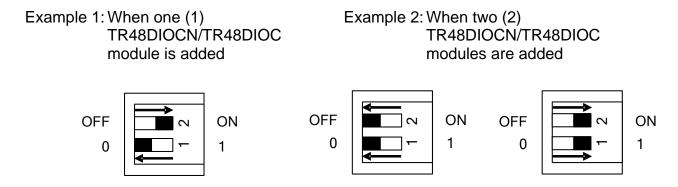

3.6.2 Connecting TR48DIOCN/TR48DIOC

The TR48DIOCN/TR48DIOC modules are connected as shown below.


When one (1) TR48DIOCN/TR48DIOC module is added:

When two (2) TR48DIOCN/TR48DIOC modules are added:

* The maximum current of 24 V power supplied from the TS3000 is 1.2 A. If the current exceeds 1.2 A, use an external power supply which can supply 24 V and 0 V power. At this time, the external power supply should be turned on prior to the TS3000 power supply. (With the TS3000 power ON, presence or absence of extension I/Os is judged.)



3.6.3 Setting of TR48DIOCN/TR48DIOC

Setting of station number and terminator For the TR48DIOCN/TR48DIOC module or modules connected, the station number and terminator should be specified.

• Setting of station number and terminator:

The switch (2 pins) located on the front top side of the TR48DIOCN/TR48DIOC module is used to indicate the slave station number setting (pin 1) and terminator setting (pin 2).

As shown in the figures above, set the station number for the TR48DIOCN/TR48DIOC module to the station number that is already set in the USER.PAR file.

For the terminator, when only one (1) TR48DIOCN/TR48DIOC module is used, set ON the terminator setting switch equipped on the module.

When two (2) TR48DIOCN/TR48DIOC modules are used, see the figure in Para. 3.6.1 for example. As the TR48DIOCN/TR48DIOC module on the extreme right side as viewed from the controller front side is the terminal station

in terms of cable wiring, set ON the terminator setting switch equipped on this module alone.

Setting of user parameter:

To recognize an I/O extension module by the TCmini built in the TS3000, setting of appropriate user parameter is necessary.

* To designate the slave station number of the TS3000, observe the following steps. Under [U12] of the USER.PAR (user parameter) file, you can find the following parameter setting related to the extension input and output.

```
[U12] Extend I/O setting 
{Use/Not Use} (0: Not Use, 1: Use) 
{Not Use} 
{Not Use} 
= \underline{0} 0 0 \rightarrow Corresponds to station 0. 
= \underline{0} 0 0 \rightarrow Corresponds to station 1.
```

If you wish to use only station 0 (i.e., one (1) TR48DIOCN module), for instance, change the underlined bit corresponding to station 0 to "1".

```
= 1 0 0
= 0 0 0
```

After saving the parameter file, turn off the controller power and on again. Then the above parameter becomes effective.

If you wish to use both stations 0 and 1 (i.e., two (2) TR48DIOCN modules), specify as follows and perform the same operation as above to make the parameter valid.

$$= 1 0 0$$

= 1 0 0

When using the TR48DIOCN/TR48DIOC module, careful precautions should be taken on the following matters.

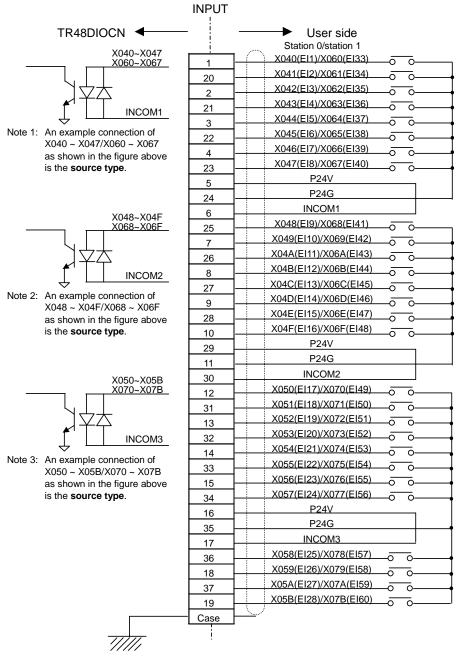
[1] Make sure that the slave station number set in "USER.PAR" coincides with the station number setting of the TR48DIOCN/TR48DIOC module.

(lower) for terminator setting.

[2] When the TR48DIOCN/TR48DIOC module or modules are connected, set ON the terminator setting switch equipped on the TR48DIOCN/TR48DIOC module which is located on the extreme right side in terms of cable wiring when seen from the controller front side.

The switches (2 pins) provided on the front upper side of the TR48DIOC module represent pin 1 (upper) for slave station number setting and pin 2

Be sure to execute Items [1] and [2] above, irrespective of the presence or absence of external power supply. Otherwise, the system may not function normally or go wrong.


With the above setting, make sure that both the POWER and RUN LEDs on each TR48DIOCN/TR48DIOC module are illuminated.

3.6.4 TR48DIOCN Input and Output

Input circuit

TR48DIOCN input signals EI01 ~ EI28 (for station 0) and EI33 ~ EI60 (for station 1) should be connected to the INPUT connector on the front side of the module. The extension input signals thus connected are assigned to I/O relays X040 ~ X05B (for station 0) and X060 ~ X07B (for station 1) of the TCmini.

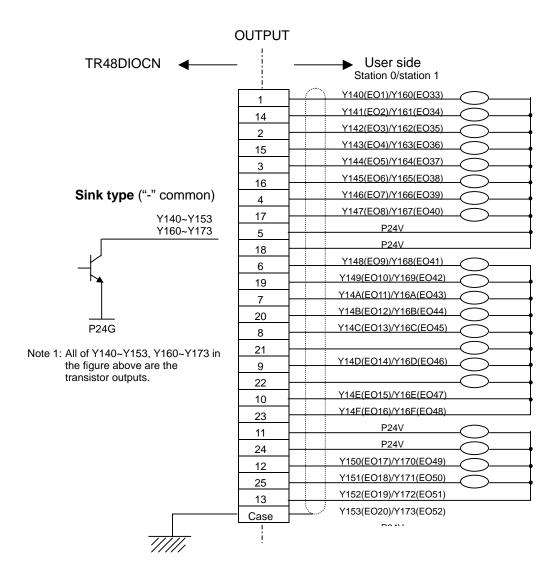

(For details, see Section 4 of this manual.)

A bilateral photo coupler is used in the input circuit. The source type or sink type can be selected by means of INCOM*. The source type is exemplified above.

Specifications of TR48DIOCN input signals

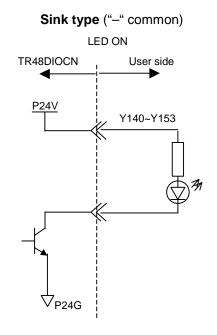
- Type of input:
 Non-voltage contact input or transistor open collector input.
- Example of application circuit and structure of input circuit:

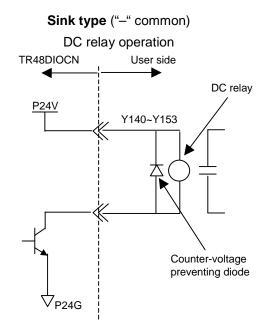
• Contact (transistor) specifications:


Non-voltage co	ntact specification	Transistor specification
Contact rating	24 VDC, 10 mA or over	Voltage between collector and emitter 30 V or over
Circuit current	Approx. 7 mA	Current between collector and emitter
Minimum current	24 VDC, 1 mA	10 mA
Connected impedar	nce	Circuit current Approx. 7 mA
•	100 Ω or less	Leak current between collector and emitter 100 µA

Type of connector:

Pin type connector: XM2A–3701 made by OMRON Connector cover: XM2S–3711 made by OMRON


Output circuit

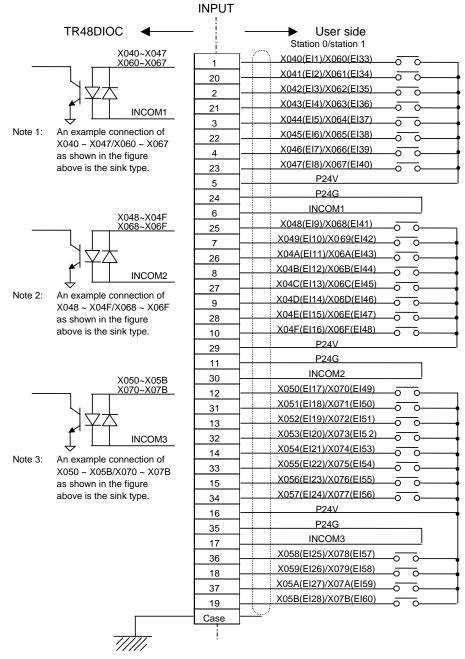

TR48DIOCN output signals EO01 ~ EO20 (for station 0) and EO33 ~ EO52 (for station 1) should be connected to the OUTPUT connector on the front side of the module. The extension output signals thus connected are assigned to I/O relays Y140 ~ Y153 (for station 0) and Y160 ~ Y173 (for station 1) of the TCmini. (For details, see Section 4 of this manual.)

Specifications of TR48DIOCN output signals

- Type of output: Transistor output
- Example of application circuit and structure of output circuit:

Electric rating:

Ele	ectric rating	Caution
Rated voltage Rated current	24 VDC 100 mA (max.)	If the current which exceeds the rated output current is supplied, the output element may be damaged or the printed board may burn. To avoid this, be sure to use within the rated output current.

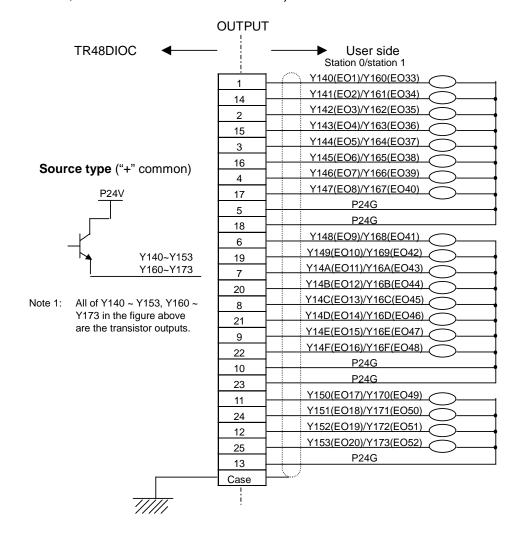

Type of connector:

Pin type connector: XM2A–2501 made by OMRON Connector cover: XM2S–2511 made by OMRON

3.6.5 TR48DIOC Input and Output

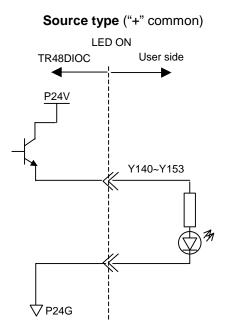
Input circuit

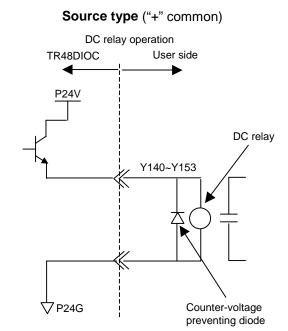
TR48DIOC input signals EI01 ~ EI28 (for station 0) and EI33 ~ EI60 (for station 1) should be connected to the INPUT connector on the front side of the module. The extension input signals thus connected are assigned to I/O relays X040 ~ X05B (for station 0) and X060 ~ X07B (for station 1) of the TCmini. (For details, see Section 4 of this manual.)


* A bilateral photo coupler is used in the input circuit. The source type or sink type can be selected by means of INCOM*. The sink type is exemplified above.

Specifications of TR48DIOC input signals

The **input specifications of TR48DIOC** are the same as those of TR48DIOCN. For details, see the input specifications in Para. **3.8.4**.


Output circuit


TR48DIOC output signals EO01 ~ EO20 (for station 0) and EO33 ~ EO52 (for station 1) should be connected to the OUTPUT connector on the front side of the module. The extension output signals thus connected are assigned to I/O relays Y140 ~ Y153 (for station 0) and Y160 ~ Y173 (for station 1) of the TCmini. (For details, see Section 4 of this manual.)

Specifications of TR48DIOC output signals

- Type of output: Transistor output
- Example of application circuit and structure of output circuit:

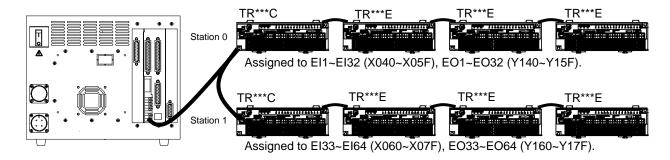
· Electric rating:

Ele	ectric rating	Caution
Rated voltage Rated current	24 VDC 100 mA (max.)	If the current which exceeds the rated output current is supplied, the output element may be damaged or the printed board may burn. To avoid this, be sure to use within the rated output current.

Type of connector:

Pin type connector: XM2A–2501 made by OMRON

Connector cover: XM2S–2511 made by OMRON


3.6.6 Remote I/O Module

In addition to the TR48DIOC modules, the TCmini built in the TS3000 can also connect our standard remote I/O modules which are shown in the table below.

Construction	Туре	Input spec.	No. of inputs	Output spec.	No. of outputs	Remarks
Unit	TR48DIOCN	DC24	28	DC24	20	Exclusively used for the robot. Internal power supply.
Unit	TR48DIOC	DC24	28	DC24	20	Exclusively used for the robot. Internal power supply.
Printed board	TR64DIRYC	DC24	32	Relay	32	I/O external power supply
Printed board	TR32DIRYC	DC24	16	Relay	16	
Printed board	TR32DIDOPC	DC24	16	DC24	16	"+" common
Printed board	TR32DIDONC	DC24	16	DC24	16	"-" common
Terminal block	TR16DIC	DC24	16		0	Slave station
Terminal block	TR16DIE	DC24	16		0	Extension
Terminal block	TR16DOPC		0	DC24	16	Slave station, "+" common
Terminal block	TR16DOPE		0	DC24	16	Extension, "+" common
Terminal block	TR16DONC		0	DC24	16	Slave station, "-" common
Terminal block	TR16DONE		0	DC24	16	Extension, "-" common

Construction	Туре	Input spec.	No. of inputs	Output spec.	No. of outputs	Remarks
Terminal block	TR16AOC		0	AC100	16	Slave station
Terminal block	TR16AOE		0	AC100	16	Extension
Terminal block	TR16RYC		0	Relay	16	Slave station
Terminal block	TR16RYE		0	Relay	16	Extension

Conditions for selecting remote I/O module:

- ① Up to two (2) remote I/O modules can be connected. Alphabet "C" at the end of the type signifies the slave station, and a total of two (2) modules of this type can be connected.
- ② The number of inputs and outputs per station is 0 ~ 32 each.
- ③ One (1) printed board serves as one (1) station.
- For the terminal block type module, up to three (3) TR16**E modules can be combined with a TR16**C module serving as the slave station. Be sure to observe the restrictions in Item ②, however.

3.7 Field Bus Input and Output (Option)

Input and output signals of the field bus slave function (option) can also be controlled from the TCmini.

Input signals (128) from the field bus are assigned to X200 ~ X27F.

Bit	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
X20W	FI16	FI15	FI14	FI13	FI12	FI11	FI10	FI9	FI8	FI7	FI6	FI5	FI4	FI3	FI2	FI1
X21W	FI32	FI31	FI30	FI29	FI28	FI27	FI26	FI25	FI24	FI23	FI22	FI21	FI20	FI19	FI18	FI17
X22W	FI48	FI47	FI46	FI45	FI44	FI43	FI42	FI41	FI40	FI39	FI38	FI37	FI36	FI35	FI34	FI33
X23W	FI64	FI63	FI62	FI61	FI60	FI59	FI58	El57	FI56	FI55	FI54	FI53	FI52	FI51	FI50	FI49
X24W	FI80	FI79	FI78	FI77	FI76	FI75	FI74	FI73	FI72	FI71	FI70	FI69	FI68	FI67	FI66	FI65
X25W	FI96	FI95	FI94	FI93	FI92	FI91	FI90	FI89	FI88	FI87	FI86	FI85	FI84	FI83	FI82	FI81
X26W	FI112	FI111	FI110	FI109	FI108	FI107	FI106	FI105	FI104	FI103	FI102	FI101	FI100	FI99	FI98	FI97
X27W	FI128	FI127	FI126	FI125	FI124	FI123	FI122	FI121	FI120	FI119	FI118	FI117	FI116	FI115	FI114	FI113

Output signals (128) to the field bus are assigned to Y300 ~ Y37F.

Bit	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
Y30W	FO16	FO15	FO14	FO13	FO12	FO11	FO10	FO9	FO8	FO7	FO6	FO5	FO4	FO3	FO2	FO1
Y31W	FO32	FO31	FO30	FO29	FO28	FO27	FO26	FO25	FO24	FO23	FO22	FO21	FO20	FO19	FO18	FO17
Y32W	FO48	FO47	FO46	FO45	FO44	FO43	FO42	FO41	FO40	FO39	FO38	FO37	FO36	FO35	FO34	FO33
Y33W	FO64	FO63	FO62	FO61	FO60	FO59	FO58	FO57	FO56	FO55	FO54	FO53	FO52	FO51	FO50	FO49
Y34W	FO80	FO79	FO78	F077	FO76	FO75	FO74	FO73	FO72	FO71	FO70	FO69	FO68	FO67	FO66	FO65
Y35W	FO96	FO95	FO94	FO93	FO92	FO91	FO90	FO89	FO88	FO87	FO86	FO85	FO84	FO83	FO82	FO81
Y36W	FO11	FO11	FO11	FO10	FO99	FO98	FO97									
Y37W	FO12	FO11														

Section 4 Relays

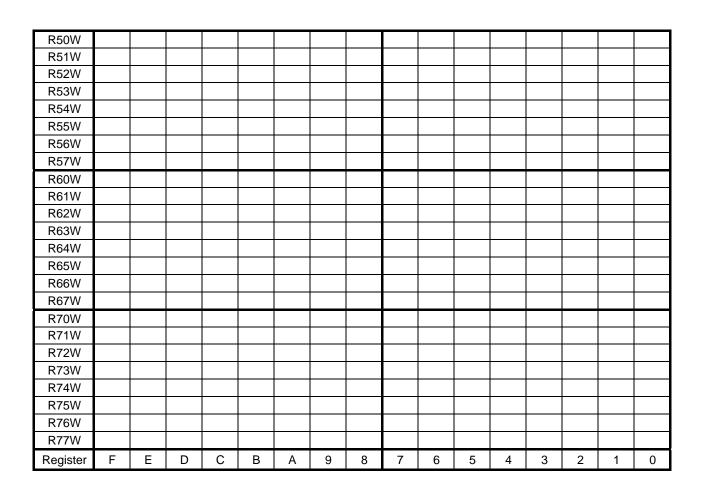
4.1 Input/Output Relays

Inputs to and outputs from the TCmini are assigned to X relays (X000 ~ X07F, X200 ~ X27F) and Y relays (Y100 ~ Y17F, Y300 ~ Y30F), respectively.

Bit	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
X00W	IN16	IN15	IN14	IN13	IN12	IN11	IN10	IN9	IN8	IN7	IN6	IN5	IN4	IN3	IN2	IN1
X01W	IN32	IN31	IN30	IN29	IN28	IN27	IN26	IN25	IN24	IN23	IN22	IN21	IN20	IN19	IN18	IN17
X02W	IN48	IN47	IN46	IN45	IN44	IN43	IN42	IN41	IN40	IN39	IN38	IN37	IN36	IN35	UFI2	UFI1
X03W	HI8	HI7	HI6	HI5	HI4	HI3	HI2	HI1	LI8	LI7	LI6	LI5	LI4	LI3	LI2	LI1
X04W	El16	EI15	EI14	El13	El12	EI11	EI10	EI9	El8	EI7	El6	EI5	EI4	EI3	El2	EI1
X05W	El32	El31	El30	El29	El28	El27	El26	El25	El24	El23	El22	El21	El20	EI19	EI18	EI17
X06W	El48	EI47	EI46	EI45	EI44	El43	El42	El41	EI40	El39	EI38	El37	El36	El35	El34	El33
X07W	El64	El63	El62	El61	EI60	El59	EI58	El57	El56	El55	EI54	El53	El52	EI51	El50	EI49
Y10W	OUT															
Y11W	OUT															
Y12W	OUT	UFO	UFO													
Y13W	HO8	H07	HO6	HO5	HO4	НО3	HO2	HO1								
Y14W	EO16	EO15	EO14	EO13	EO12	EO11	EO10	EO9	EO8	EO7	E06	EO5	EO4	EO3	EO2	EO1
Y15W	EO32	EO31	EO30	EO29	EO28	EO27	EO26	EO25	EO24	EO23	EO22	EO21	EO20	EO19	EO18	EO17
Y16W	EO48	EO47	EO46	EO45	EO44	EO43	EO42	EO41	EO40	EO39	EO38	EO37	EO36	EO35	EO34	EO33
Y17W	EO64	EO63	EO62	EO61	EO60	EO59	EO58	EO57	EO56	EO55	EO54	EO53	EO52	EO51	EO50	EO49
X20W	FI16	FI15	FI14	FI13	FI12	FI11	FI10	FI9	FI8	FI7	FI6	FI5	FI4	FI3	FI2	FI1
X21W	FI32	FI31	FI30	FI29	FI28	FI27	FI26	FI25	FI24	FI23	FI22	FI21	FI20	FI19	FI18	FI17
X22W	FI48	FI47	FI46	FI45	FI44	FI43	FI42	FI41	FI40	FI39	FI38	FI37	FI36	FI35	FI34	FI33
X23W	FI64	FI63	FI62	FI61	FI60	FI59	FI58	FI57	FI56	FI55	FI54	FI53	FI52	FI51	FI50	FI49
X24W	FI80	FI79	FI78	FI77	FI76	FI75	FI74	FI73	FI72	FI71	FI70	FI69	FI68	FI67	FI66	FI65
X25W	FI96	FI95	FI94	FI93	FI92	FI91	FI90	FI89	FI88	FI87	FI86	FI85	FI84	FI83	FI82	FI81
X26W	FI112	FI111	FI110	FI109	FI108	FI107	FI106	FI105	FI104	FI103	FI102	FI101	FI100	FI99	FI98	FI97
X27W	FI128	FI127	FI126	FI125	FI124	FI123	FI122	FI121	FI120	FI119	FI118	FI117	FI116	FI115	FI114	FI113
Y30W	FO16	FO15	FO14	FO13	FO12	FO11	FO10	FO9	FO8	FO7	FO6	FO5	FO4	FO3	FO2	FO1
Y31W	FO32	FO31	FO30	FO29	FO28	FO27	FO26	FO25	FO24	FO23	FO22	FO21	FO20	FO19	FO18	FO17
Y32W	FO48	FO47	FO46	FO45	FO44	FO43	FO42	FO41	FO40	FO39	FO38	FO37	FO36	FO35	FO34	FO33
Y33W	FO64	FO63	FO62	FO61	FO60	FO59	FO58	FO57	FO56	FO55	FO54	FO53	FO52	FO51	FO50	FO49
Y34W	FO80	FO79	FO78	FO77	FO76	FO75	FO74	FO73	FO72	FO71			FO68	FO67	FO66	FO65
Y35W				FO93				FO89		FO87		FO85		FO83	FO82	FO81
Y36W	FO11			FO10						FO10		FO10		FO99	FO98	
Y37W	FO12	FO11														
Register	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0

X***

	input, panel input, hand input or extension input signal.
	The ON or OFF status is read at I/O processing in each scanning cycle.
	It can be used as the contact input information and data register source in
	the sequence program.
Y***	Signifies an exclusive output relay which is connected to the standard
	output, panel output, hand output or extension output signal.
	It serves as the destination of coil and data register in the sequence
	program, where operation result is written.
	The operation result can be used as the source of contact and data register
	in the sequence program.
	The operation result is transferred as the ON/OFF information to the output
	device at I/O processing in each scanning cycle.
	Relays reserved for future extension of the system functions. Values are
	undecided and cannot be used.


Represents an exclusive input relay which is connected to the standard

For further information on the input and output specifications, see Section 3.

4.2 Internal Relay

A total of 1024 relays (R000 \sim R7F) can be used as the internal relay.

Bit	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
R00W																R000
R01W																
R02W																
R03W																
R04W																
R05W																
R06W																
R07W																
R10W																
R11W																
R12W																
R13W																
R14W																
R15W																
R16W																
R17W																
R20W																
R21W																
R22W																
R23W																
R24W																
R25W																
R26W																
R27W																
R30W																
R31W																
R32W																
R33W																
R34W																
R35W																
R36W																
R37W																
R40W																
R41W																
R42W																
R43W																
R44W																
R45W																
R46W																
R47W																

R000 ~ R77F:

Serve as the destination of coil and data register in the user program, where operation result is written.

They can be used as a temporary storage of operation result which need not be output to the external device.

The operation result can be used as the source of contact and data register in the user program.

4.3 Interface Relay

The interface relay serves as the interface area for transferring signals with the main unit of the robot controller.

For details, see Section 6 of this manual.

TCmini → Robot controller main unit (R200 ~ R37F)

	111111	7 1101	יטו טנ				iir (iz	200 ~	1131	ı <i>)</i>						
Bit	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
G00W	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN
00011	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
G01W	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN
-	32 DIN	31 DIN	30 DIN	29 DIN	28 DIN	27 DIN	26 DIN	25 DIN	24 DIN	23 DIN	22 DIN	21 DIN	20 DIN	19 DIN	18 DIN	17 DIN
G02W	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33
0.00144	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN
G03W	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49
G04W	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN
00477	116	115	114	113	112	111	110	109	108	107	106	105	104	103	102	101
G05W	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN
	132 DIN	131 DIN	130 DIN	129 DIN	128 DIN	127 DIN	126 DIN	125 DIN	124 DIN	123 DIN	122 DIN	121 DIN	120 DIN	119 DIN	118 DIN	117 DIN
G06W	148	147	146	145	144	143	142	141	140	139	138	137	136	135	134	133
	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN
G07W	164	163	162	161	160	159	158	157	156	155	154	153	152	151	150	149
G10W						LMIT	MLT	OFS	HAND	HAND	HAND	HAND	HAND	HAND	HAND	HAND
GTOW						OFF	RST	MOD	IN8	IN7	IN6	IN5	IN4	IN3	IN2	IN1
G11W	AL8-	AL8-	AL8-	AL8-2	AL4-	AL4-	AL4-	AL4-	AL1-	AL1-	AL1-	AL1-	AL1-	AL1-	AL1-	AL1-
J	272	271	270	69	080	079	078	077	044	043	042	041	040	039	038	037
G12W																
G13W				SV OFF	BREA K	LOW_ SPD	CYCL E	STOP	EX_ SVON	RUN	ALM _RST	DO _RST	CYC _RST	STEP _RST	PRG_ RST	STRO BE
044)4/				OFF	IX.	SFD			37011		_K31	_K31	_K31	_K31	KSI	DL
G14W				Pasary	ed area											
G17W				I COCI V	eu area											
	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN
G20W	316	315	314	313	312	311	310	309	308	307	306	305	304	303	302	301
G21W	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN
GZTVV	332	331	330	329	328	327	326	325	324	323	322	321	320	319	318	317
G22W	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN
	348 DIN	347 DIN	346 DIN	345	344 DIN	343	342	341	340 DIN	339	338 DIN	337 DIN	336 DIN	335 DIN	334 DIN	333
G23W	364	363	362	DIN 361	360	DIN 359	DIN 358	DIN 357	356	DIN 355	354	353	352	351	350	DIN 349
C24\\\	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN
G24W	416	415	414	413	412	411	410	409	408	407	406	405	404	403	402	401
G25W	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN
	432	431	430	429	428	427	426	425	424	323	422 DIN	421	420	419	418	417 DIN
G26W	DIN 448	DIN 447	DIN 446	DIN 445	DIN 444	DIN 443	DIN 442	DIN 441	DIN 440	DIN 339	DIN 438	DIN 437	DIN 436	DIN 435	DIN 434	DIN
	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	433 DIN
G27W	464	463	462	461	460	459	458	457	456	355	454	453	452	451	450	449
Bit	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0

Robot controller main unit → TCmini (R400 ~ R57F)

								<u>400 ~</u>			1			1	r	
Bit	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
H00W	DOUT 16	DOUT 15	DOUT 14	DOUT 13	DOUT 12	DOUT 11	DOUT 10	DOUT 9	DOUT 8	DOUT 7	DOUT 6	DOUT 5	DOUT 4	DOUT 3	DOUT 2	DOUT 1
H01W	DOUT 32	DOUT 31	DOUT 30	DOUT 29	DOUT 28	DOUT 27	DOUT 26	DOUT 25	DOUT 24	DOUT 23	DOUT 22	DOUT 21	DOUT 20	DOUT 19	DOUT 18	DOUT 17
H02W	DOUT 48	DOUT 47	DOUT 46	DOUT 45	DOUT 44	DOUT 43	DOUT 42	DOUT 41	DOUT 40	DOUT 39	DOUT 38	DOUT 37	DOUT 36	DOUT 35	DOUT 34	DOUT 33
H03W	DOUT 64	DOUT 63	DOUT 62	DOUT 61	DOUT 60	DOUT 59	DOUT 58	DOUT 57	DOUT 56	DOUT 55	DOUT 54	DOUT 53	DOUT 52	DOUT 51	DOUT 50	DOUT 49
H04W	DOUT 116	DOUT 115	DOUT 114	DOUT 113	DOUT 112	DOUT 111	DOUT 110	DOUT 109	DOUT 108	DOUT 107	DOUT 106	DOUT 105	DOUT 104	DOUT 103	DOUT 102	DOUT 101
H05W	DOUT 132	DOUT 131	DOUT 130	DOUT 129	DOUT 128	DOUT 127	DOUT 126	DOUT 125	DOUT 124	DOUT 123	DOUT 122	DOUT 121	DOUT 120	DOUT 119	DOUT 118	DOUT 117
H06W	DOUT 148	DOUT 147	DOUT 146	DOUT 145	OUT 144	DOUT 143	DOUT 142	DOUT 141	DOUT 140	DOUT 139	DOUT 138	DOUT 137	DOUT 136	DOUT 135	DOUT 134	DOUT 133
H07W	DOUT 164	DOUT 163	DOUT 162	DOUT 161	DOUT 160	DOUT 159	DOUT 158	DOUT 157	DOUT 156	DOUT 155	DOUT 154	DOUT 153	DOUT 152	DOUT 151	DOUT 150	DOUT 149
H10W							MLT END	OFS END	HAND OUT8	HAND OUT7	HAND OUT6	HAND OUT5	HAND OUT4	HAND OUT3	HAND OUT2	HAND OUT1
H11W									SEQ PAR8	SEQ PAR7	SEQ PAR6	SEQ PAR5	SEQ PAR4	SEQ PAR3	SEQ PAR2	SEQ PAR1
H12W																
H13W		EXT ETHE R	ALAR M	BT_ ALM	CYC _ST	LOW _ST	CYC _END	AUTO RUN	SYS_ RDY	EXT 232C	EXT SIG	INT	TEAC H	ACK	SV_ RDY	EMG_ ST
H14W ~ H17W				Reserv	ed area											
H20W	DOUT															
112000	316	315	314	313	312	311	310	309	308	307 DOUT	306 DOUT	305	304	303	302	301
H21W	DOUT 332	DOUT 331	DOUT 330	DOUT 329	DOUT 328	DOUT 327	DOUT 326	DOUT 325	DOUT 324	323	322	DOUT 321	DOUT 320	DOUT 319	DOUT 318	DOUT 317
H22W	DOUT	DOUT	DOUT	DOUT	OUT	DOUT										
	348 DOUT	347 DOUT	346 DOUT	345 DOUT	344 DOUT	343 DOUT	342 DOUT	341 DOUT	340 DOUT	339 DOUT	338 DOUT	337 DOUT	336 DOUT	335 DOUT	334 DOUT	333 DOUT
H23W	364	363	362	361	360	359	358	357	356	355	354	353	352	351	350	349
H24W	DOUT		DOUT	DOUT	DOUT	DOUT	DOUT	DOUT								
H25W	416 DOUT 432	415 DOUT 431	414 DOUT 430	413 DOUT 429	412 DOUT 428	411 DOUT 427	410 DOUT 426	409 DOUT 425	408 DOUT 424	407 DOUT 323	406 DOUT 422	405 DOUT 421	404 DOUT 420	403 DOUT 419	402 DOUT 418	401 DOUT 417
H26W	DOUT															
H27W	448 DOUT	447 DOUT	446 DOUT	445 DOUT	444 DOUT	443 DOUT	442 DOUT	441 DOUT	440 DOUT	339 DOUT	438 DOUT	437 DOUT	436 DOUT	435 DOUT	434 DOUT	433 DOUT
	464	463	462	461	460	459	458	457	456	355	454	453	452	451	450	449
Bit	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0

4.4 Edge Relay

A total of 256 edge relays (E000 ~ E03F) are available.

Bit	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
E00W																
E01W																
E02W																
E03W																
E04W																
E05W																
E06W																
E07W																
E10W																
E11W																
E12W																
E13W																
E14W																
E15W																
E16W																
E17W																
Register	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0

E*** Once the condition is ON, the edge relay turns on only for one (1) scan time. To turn on the relay again, set OFF the condition once, then ON.

4.5 Latch Relay

A total of 128 latch relays (L000 ~ L01F) are available.

Bit	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
L00W																
L01W																
L02W																
L03W																
L04W																
L05W																
L06W																
L07W																
Register	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0

L*** Once the condition is ON, the latch relay remains on until the reset input is ON.

4.6 Timer/Counter

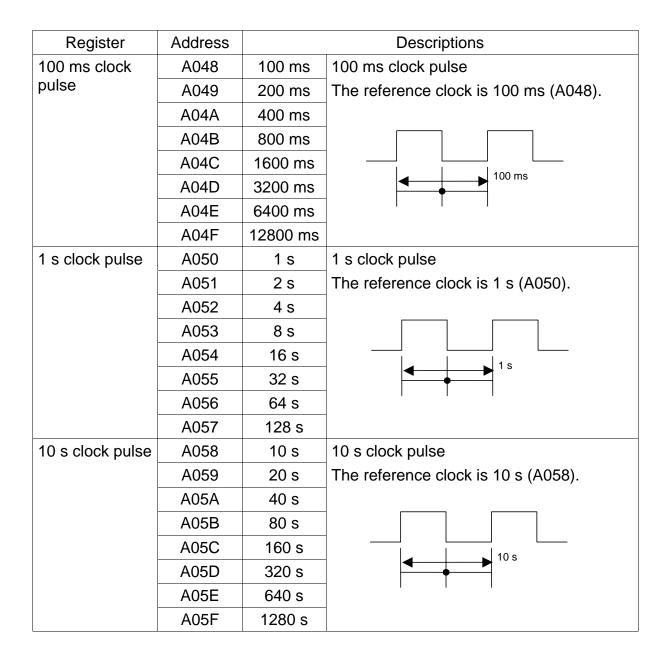
T/C000 ~ T/C27F are the common relays of the timer and counter.

Relay T000 used as the timer cannot be used as the C000 counter. Select either one.

Bit	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
T/C00W																
T/C01W								Timer	(100 m	s) or c	ounter	l	l			
T/C02W							ì	ı	(100 III •	13 <i>)</i> 01 01	ı	İ	 I			
T/C03W																
T/C04W																
T/C05W																
T/C06W																
T/C07W																
T/C08W																
T/C09W								Timer	(10 m	s) or co	ounter	•	•			
T/C10W									(· • · · ·	_, 						
T/C11W																
T/C12W																
T/C13W																
T/C14W																
T/C15W																
T/C16W																
T/C17W																
T/C20W																
T/C21W																
T/C22W																
T/C23W								Time	er (100	ms) or o	counter		_			
T/C24W											1					
T/C25W																
T/C26W																
T/C27W																
Register	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0

T*** 100 msec timer/10 msec timer

Once the condition is ON, the timer relay decrements a value set on the timer every 100 ms or 10 ms. When the value has reached zero (0), the timer turns on.


C*** The counter relay turns on when the number of pulses equal to a value set on the counter is input.

When the counter reset input turns on, the counter value is reset to the set value.

4.7 Special Auxiliary Relay

A relay whose address starts with A signifies the special auxiliary relay.

Register	Address	•									
Operation flag	A000		: Turns on when the result of arithmetic ncludes a carry or borrow.								
	A002		lag]: Turns on when the result of arithmetic ncludes an overflow.								
	A006	[Zero flag]: operation is	Turns on when the result of arithmetic s zero (0).								
	A007	- 0	Turns on when the MSB of arithmetic esult is "1".								
Alarm flag	A016	Fuse blowd	out detection flag.								
Scan time	A03L		me is displayed in BIN code and in units of the byte register address (A03L).								
50 ms clock	A038	50 ms	50 ms clock pulse								
pulse	A039	100 ms	The reference clock is 50 ms (A038).								
	A03A	200 ms									
	A03B	400 ms									
	A03C	800 ms									
	A03D	1600 ms	30 1113								
	A03E	3200 ms									
	A03F	6400 ms									
10 ms clock	A040	10 ms	10 ms clock pulse								
pulse	A041	20 ms	The reference clock is 10 ms (A040).								
	A042	40 ms									
	A043	80 ms									
	A044	160 ms									
	A045	320 ms	10 ms								
	A046	640 ms									
	A047	1280 ms									

Section 5 Registers

A total of 512 registers (D000 \sim D37F) are available for the TCmini.

5.1 Data Register

Register	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
D00*																
D01*																
D02*									Data r	egister						
D03*									Dala II	-gisteri	· –					
D04*																
D05*																
D06*																
D07*																
D10*																
D11*																
D12*									Data r	egisters	2					
D13*										ı	о — I					
D14*																
D15*																
D16*																
D17*																
D20*																
D21*																
D22*									Data r	egisters	S _					
D23*										<u> </u>	<u> </u>					
D24*																
D25*																
D26*																
D27*																
D30*																
D31*																
D32*																
D33*								Data	regist	ers (ba	ackup)					
D34*									- 59.50							
D35*																
D36*																
D37*																
Register	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0

The data register is a word length (16-bit) register which cannot be specified as the byte (8-bit) register.

This is a word length (16-bit) which cannot be specified as the byte register.

The operation result is written as the destination in the user's program.

The operation result can be used as the source in the user's program.

Each time the data of D060 ~ D11F has been changed, it is written to the EEPROM and held there. Writing of up to one (1) million counts is possible. When using this register as the job register, take careful precautions. (Each time the data has been changed, writing of EEPROM is executed.)

5.2 Interface Register

The interface register serves as the interface area for transferring data with the main unit of the robot controller.

Register	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
D40*									PLC DATA							
				_					R8	R7	R6	R5	R4	R3	R2	R1
D41*				Reserv	ed area	l										
D42* D43*																
D44* D45*				Reserv	ed area	ı										
D46*									<u> </u>							
D47*																USER
D50*																
D51*																
D52*																
D53*																
D54*				Reserv	ed area	l										
D55*																
D56*																
D57*																
D. a.a.t									PLC							
D60*									DATA W8	DATA W7	DATA W6	DATA W5	DATA W4	DATA W3	DATA W2	DATA W1
D61*				Reserv	ed area	ì			DOM	DON	DOM	DON	DOM	DOM	DOM	DON
D62*									PSN_ W8	PSN_ W7	PSN_ W6	PSN_ W5	PSN_ W4	PSN_ W3	PSN_ W2	PSN_ W1
D63*									PSN_ J8	PSN_ J7	PSN_ J6	PSN_ J5	PSN_ J4	PSN_ J3	PSN_ J2	PSN_ J1
D64*									TRQ_							
D65*									J8	J7	J6	J5	J4	J3	J2	J1
D66*													_			
D67*	AL10	AL09	AL08	AL07	AL06	AL05	AL04	AL03	AL02	AL01	ALNO	STEP				
D70*																
D71*																
D72*																
D73*				Reserv	ed area	l										
D74*																
D75*																
D76*																
D77*																
Register	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0

For details, see Section 6.

5.3 Timer/Counter Current Value Register

P000 ~ P05F are the timer/counter current value registers. Current values can be referred to and set in the sequence program.

Register	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
P00*																
P01*						Timer	current	values	(100 ms	s)/count	er set v	alues				
P02*									•							
P03*																
P04*																
P05*																
P06*																
P07*																
P10*																
P11*					т	imer cui	rent val	ues (10	ms)/co	unter ci	irrent va	alues _				
P12*							TOTIL VAI	405 (10				11000				
P13*																
P14*																
P15*																
P16*																
P17*																
P20*																
P21*																
P22*																
P23*					т	imer cur	rent val	ues (10	ms)/co	unter cu	irrent va	ılues _				
P24*																
P25*																
P26*																
P27*																
Register	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0

P*** If used as the source in the user's program, the timer/counter current value can be read. (Backward timer and counter)

If written as the destination in the user's program during counting, the current value can be changed.

For the register used as the timer current value, the set value is equal to the current value at power ON, fall time (RUN \rightarrow STOP) or timer OFF.

This is a word length (16-bit) register which cannot be specified as the byte register.

5.4 Timer/Counter Set Value Register

V000 ~ V05F are the timer/counter set value registers. Current values can be referred to and set in the sequence program.

Register	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
V00*																
V01*						Timer	set vali	(۱۸۲ عما	ms)/co	unter se	t value					
V02*						1111161	set vait		• 1113//00	uniter se	ı value.	· —				
V03*																
V04*																
V05*																
V06*																
V07*																
V10*																
V11*					т:	 		(40 -	\/			1				
V12*					— III	ner curr	ent valu	es (10 r	ns)/cou •	nter cur	rent val	ues —				
V13*																
V14*																
V15*																
V16*																
V17*																
V20*																
V21*																
V22*																
V23*					Tiv	ner curi	ont valu	100 (10)	ma)/aau	ntor our	ront vol					
V24*						ner curr	eni vait	ies (101	11S)/COU	inter cur	reni vai	ues —				
V25*																
V26*																
V27*																
Register	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0

V*** If used as the destination in the user's program, the set value can be changed.

The area not used as the timer/counter can be used as the register.

This is a word length (16-bit) register which cannot be specified as the byte register.

Section 6 Robot Interface

Transfer of signals between the main unit of robot controller and TCmini is all performed through the interface relays and interface registers.

Each interface register has signal input and output directions.

6.1 TCmini → Main Unit of Robot Controller

TCmini → Main unit of robot controller (G000 ~ G27F)

							iei (C									_
Bit	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
C00\\\	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN						
G00W	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
004144	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN						
G01W	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17
	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN						
G02W	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33
			DIN	DIN							DIN	DIN	DIN			DIN
G03W	DIN	DIN			DIN	DIN	DIN	DIN	DIN	DIN				DIN	DIN	
	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49
G04W	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN						
00477	116	115	114	113	112	111	110	109	108	107	106	105	104	103	102	101
COEW	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN						
G05W	132	131	130	129	128	127	126	125	124	123	122	121	120	119	118	117
00014/	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN						
G06W	148	147	146	145	144	143	142	141	140	139	138	137	136	135	134	133
	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN						
G07W	164	163	162	161	160	159	158	157	156	155	154	153	152	151	150	149
-	104	103	102	101	100											
G10W						LMIT	MLT	OFS	HAND							
						OFF	RST	MOD	IN8	IN7	IN6	IN5	IN4	IN3	IN2	IN1
G11W	AL8-	AL8-	AL8-	AL8-	AL4-	AL4-	AL4-	AL4-	AL1-							
GIIVV	272	271	270	269	080	079	078	077	044	043	042	041	040	039	038	037
C40\\\																
G12W																
0 1 - 1 1 1				SV	BREA	LOW_	CYCL		EX_		ALM	DO	CYC	STEP	PRG_	STRO
G13W				OFF	K	SPD	E	STOP	SVON	RUN	_RST	_RST	RST	_RST	RST	BE
G14W																
G14VV																
~																
G17W																
G20W	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN						
02011	316	315	314	313	312	311	310	309	308	307	306	305	304	303	302	301
G21W	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN						
GZIVV	332	331	330	329	328	327	326	325	324	323	322	321	320	319	318	317
000147	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN						
G22W	348	347	346	345	344	343	342	341	340	339	338	337	336	335	334	333
	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN						
G23W	364	363	362	361	360	359	358	357	356	355	354	353	352	351	350	349
G24W	DIN	DIN	DIN		DIN		DIN	DIN		DIN						
	416	415	414	413	412	411	410	409	408	407	406	405	404	403	402	401
G25W	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN						
J25VV	432	431	430	429	428	427	426	425	424	423	422	421	420	419	418	417
C2014/	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN						
G26W	448	447	446	445	444	443	442	441	440	439	438	437	436	435	434	433
00-11	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN						
G27W	464	463	462	461	460	459	458	457	456	455	454	453	452	451	450	449
Bit	F	E	D	C	В	A	9	8	7	6	5	4	3	2	1	0
DIL	ľ	Ē	ט	U	ם	А	Э	0	/	Ü	J	4	J		ı	U

G000 ~ G27F:

Signifies an exclusive output relay which outputs a signal to the main unit of the robot controller.

It serves as the destination of coil and data register in the sequence program, where operation result is written.

The operation result can be used as the source of contact and data register in the sequence program.

The operation result ON/OFF is transferred to the output device at I/O processing of every scan cycle.

Relays in the shaded areas are reserved for future extension of the system functions. Values are undecided and cannot be used.

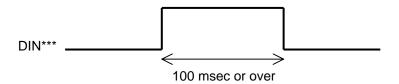
The five (5) signals of STOP, CYCLE, LOW_SPD, BREAK and SVOFF are valid when they are low. Unless the signals are processed legally, the robot cannot be moved.

* G108 to G10F are optional signals for specific customers.

DIN1 ~ 64, DIN101 ~ 164, DIN301 ~ 364, DIN401 ~ 464

Address

G000 ~ G07F, G200 ~ R27F


Direction

TCmini → Main unit of robot controller

Function

Interface relay corresponding to the robot's DIN command. In the WAIT DIN (1) command, it waits until DIN1 (G000) turns on.

Timing chart

The width of a signal to be output should be 100 msec or over. If the signal width is too short, change in signal status may not be identified by the DIN command in some circumstances.

Remarks

Though the relay name is DIN (digital input signal), it is the output relay.

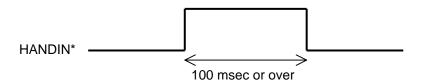
HANDIN1 ~ 8 (Hand Input Signal)

Address

G100 ~ G107

Direction

TCmini → Main unit of robot controller


Function

Interface relay corresponding to the robot's DIN command. Except for the exclusive monitor display for the hand (Para. 12.3 of Operator's Manual), the function is the same as DIN***.

Each signal corresponds to the DIN command as shown below.

Signal name	Relay address	Command
HANDIN1	G100	DIN201
HANDIN2	G101	DIN202
HANDIN3	G102	DIN203
HANDIN4	G103	DIN204
HANDIN5	G104	DIN205
HANDIN6	G105	DIN206
HANDIN7	G106	DIN207
HANDIN8	G107	DIN208

Timing chart

The width of a signal to be output should be 100 msec or over. If the signal width is too short, change in signal status may not be identified by the DIN command in some circumstances.

Remarks

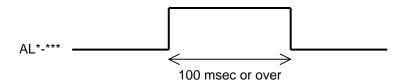
Though the relay name is HANDIN (hand input signal), it is the output relay.

AL8-269 ~ 272 (Alarm of Level 8) AL4-077 ~ 080 (Alarm of Level 4) AL1-037 ~ 044 (Alarm of Level 1)

Address AL8–269 ~ 272: **G11C ~ G11F**

AL4-077 ~ 080: **G118 ~ G11B**

AL1-037 ~ 044: **G110 ~ G117**


Direction TCmini → Main unit of robot controller

Function Makes the robot in an ALARM state from the TCmini.

Signal name	Relay address	Robot status
AL1-037	G110	
AL1-038	G111	
AL1-039	G112	
AL1-040	G113	Message
AL1-041	G114	display
AL1-042	G115	
AL1-043	G116	
AL1-044	G117	
AL4-077	G118	
AL4-078	G119	Motion
AL4-079	G11A	stop
AL4-080	G11B	
AL8-269	G11C	
AL8-270	G11D	Emergency
AL8-271	G11E	stop
AL8-272	G11F	

When alarm messages for respective alarms are registered in user parameters beforehand, any message can be displayed. For details, see the User Parameter Manual.

Timing chart

The width of a signal to be output should be 100 msec or over. If the signal width is too short, appropriate alarm may not be identified in some circumstances.

Remarks

Connect a signal relating to safety (such as emergency stop switch) to an external emergency stop signal processed by hardware (EMS1B ~ EMS1C, EMS2B ~ EMS2C).

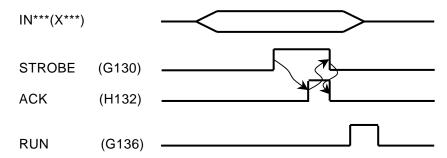
STROBE (Strobe Signal)

Address

G130

Direction

TCmini → Main unit of robot controller


Function

Selects a program registered in the robot controller from the TCmini.

This signal is valid only in the EXT.SIG mode.

The program number selected uses any consecutive "n" external digital input signals (max. four (4) signals) and is input by code.

Timing chart

With the start of STROBE, the above digital signals are read to select an appropriate program. When the program has been selected, the ACK signal turns on. Set ON the RUN signal and execute the program.

Remarks

DO NOT input the STROBE signal together with the PRG_RST, CYC_RST, STEP_RST or DO_RST signal. Because the ACK signal is used in common, only the first signal which is input becomes valid and all other signals are invalid.

If a file other than the current file is selected, the program is reset to step 1 and all values of variables are also reset.

The program name and external select signal should be set in the USER.PAR file.

```
[U07] Specify signal for EXTSELECT

{Signal No } (1 – 64,101 – 164)

{Bit length } (1 – 4)

= 2 3
```

The selected program is set in the EXTRNSEL.SYS file.

```
*** [00-0F] ***

= "PROG0"

= "PROG1"

= "PROG2"

= "PROG3"
```

When the setting is as shown above, a file is selected by the three (3) signals, starting from DIN2 (R201 ~ R203).

DIN4	DIN3	DIN2	
OFF	OFF	ON	Selection of PROG1
OFF	ON	ON	Selection of PROG3

PRG_RST (Program Reset)

Address G131

Direction TCmini → Main unit of robot controller

Resets an interrupted program to step 1 from the TCmini.

Also resets the value of each variable to "0".

This signal is energive only in the EXT SIC mode.

This signal is operative only in the EXT.SIG mode.

Timing chart

AUTORUN (H138)

PRG_RST (G131)

ACK (H132)

Remarks

DO NOT input the PRG_RST signal together with the STROBE, CYC_RST, STEP_RST or DO_RST signal. Because the ACK signal is used in common, only the first signal which is input becomes valid and all other signals are invalid.

STEP_RST (Step Reset)

Address G132

Direction TCmini → Main unit of robot controller

Function

Resets an interrupted program to step 1 from the TCmini.

The value of each variable used in the program remains intact.

This signal is operative only in the EXT.SIG mode.

This signal is operative only in the EXT.SIG mode.

Timing chart

AUTORUN (H138)

STEP_RST (G132)

ACK (H132)

Remarks

DO NOT input the STEP_RST signal together with the STROBE, PRG_RST, CYC_RST, or DO_RST signal. Because the ACK signal is used in common, only the first signal which is input becomes valid and all other signals are invalid.

CYC_RST (Cycle Reset)

Address G133

Direction TCmini → Main unit of robot controller

Function Resets an interrupted program to the step of RCYCLE label from the TCmini.

The value of each variable used in the program remains intact.

This signal is operative only in the EXT.SIG mode.

Timing chart

AUTORUN (H138)

CYC_RST (G133)

ACK (H132)

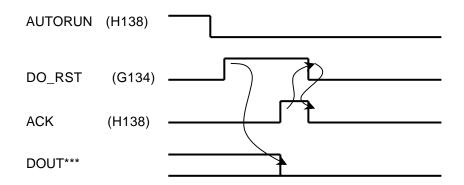
Remarks

DO NOT input the CYC_RST signal together with the STROBE, PRG_RST, STEP_RST, or DO_RST signal. Because the ACK signal is used in common, only the first signal which is input becomes valid and all other signals are invalid.

DO_RST (Output Signal Reset)

Address

Direction TCmini → Main unit of robot controller


G134

Interface relay which resets the digital output signals (DOUT1 ~ DOUT64, DOUT101 ~ DOUT164) from the TCmini.
Once reset, all of R400 ~ R47F turn off.

This signal is operative only in the EXT.SIG mode.

Timing chart

Function

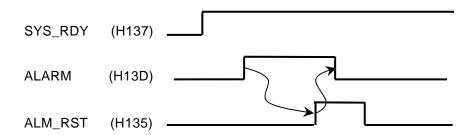
Remarks

DO NOT input the DO_RST signal together with the STROBE, PRG_RST, CYC_RST or STEP_RST signal.

Because the ACK signal is used in common, only the first signal which is input becomes valid and all other signals are invalid.

The hand control signals (HANDOUT1 ~ 8) are not reset at all.

ALM_RST (Alarm Reset)


Address G135

Direction TCmini → Main unit of robot controller

Function Resets from the TCmini an alarm which occurred in the robot controller.

This signal is operative only in the EXT.SIG mode.

Timing chart

Remarks

If an alarm of the emergency stop level in which servo ON is not possible, or the "emergency stop ON" is output, alarm reset by ALM_RST is not allowed.

RUN (Startup)

Address G136

Direction TCmini → Main unit of robot controller

Function Starts a program registered in the robot controller from the TCmini to execute an automatic cycle operation.

This signal is operative only in the EXT.SIG mode.

Timing chart

SV_RDY (H137)

RUN (G136)

AUTORUN (H138)

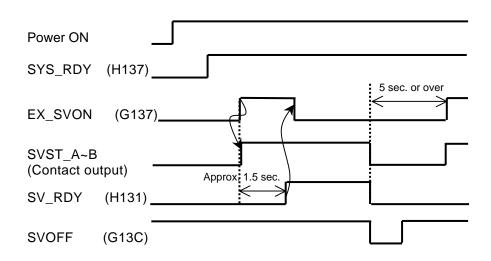
Remarks With the

With the start of RUN, automatic operation starts.

Set ON the RUN signal only after the SV_RDY signal is ON and the robot is ready to operate. If the RUN signal is set ON while the SV_RDY signal is OFF, the RUN signal is neglected.

EX_SVON (External Servo ON)

Address G137


Direction TCmini → Main unit of robot controller

Function Turns on the servo driver power from the TCmini.

Once the servo power is turned on, it is maintained even after this signal turns off.

This signal is operative only in the EXT.SIG mode.

Timing chart

Remarks

It takes about 1.5 seconds from the servo ON to the time when the robot is actually ready to work (i.e., the time when the SV_RDY signal is ON).

When setting on the RUN signal, etc., wait until SV_RDY turns on.

To set ON this signal again just after the servo OFF, wait at least five (5) seconds.

STOP (Stop)

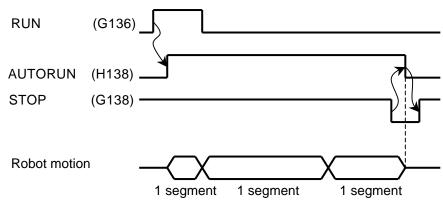
Address

G138

Direction

TCmini → Main unit of robot controller

Function


Stops executing a program registered in the robot controller from the TCmini.

The program stops only after the current motion command has been executed while this signal was OFF (i.e., low).

After the stop, the robot enters a STOP (CONT) state. The robot will not work even if this signal is set ON after stop of the robot motion.

This signal is always operative, irrespective of the master mode selected by means of the MODE switch.

Timing chart

Note: Duration covering from the start of one motion command to just before the start of next motion command is called the 1 segment.

- When the RUN command is executed after cancel of the stop, the program restarts from the step next to the interrupted step.
- 2. RUN signal input is ineffective at the input of stop signal.
- Unless this signal is used, always set it ON in the sequence circuit.

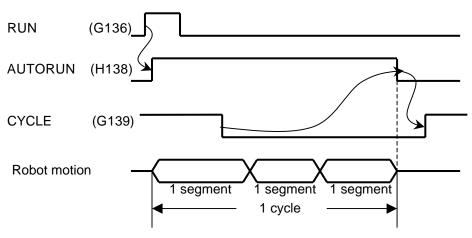
CYCLE (Cycle Operation Mode)

Address

G139

Direction

TCmini → Main unit of robot controller


Function

Stops from the TCmini a program registered in the robot controller after current one (1) cycle operation has been executed during automatic operation.

When this signal is OFF (i.e., low), cycle stop is affected.

This signal is operative only in the EXT.SIG mode.

Timing chart

- * Duration covering from the start of one motion command to just before the start of next motion command is called the "1 segment".
- * Duration from the top of the main program to the END command is called the "1 cycle".

- 1. When the RUN command is executed after cancel of the cycle operation mode, the continuous operation starts from the cycle next to the interrupted cycle.
- 2. Unless this signal is used, always set it ON in the sequence circuit.

LOW_SPD (Low Speed Command)

Ad	d	ress

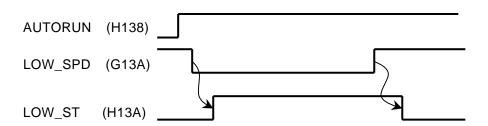
G13A

Direction

TCmini → Main unit of robot controller

Function

Causes the robot operation speed to low speed from the TCmini.


The robot operates at a low speed while this signal is OFF (i.e., low).

The robot operation speed in the low speed mode can be set by means of the parameter. (Initial set value: 25%)

When this signal is OFF, the override value changes. When the signal is ON, the previously set value takes effect again.

This signal is always effective, irrespective of the master mode selected by means of the MODE switch.

Timing chart

- 1. During the low speed command, an override set in the parameter beforehand is affected on all motion speeds.
- 2. Unless this signal is used, always set it ON in the sequence circuit.

BREAK (Deceleration and Stop)

Address

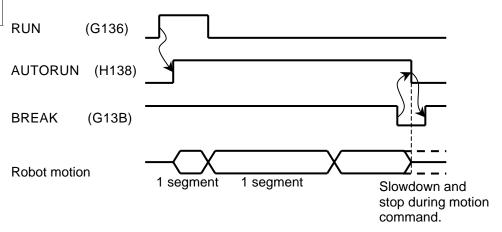
G13B

Direction

TCmini → Main unit of robot controller

Function

Stops the robot motion from the TCmini.


The robot slows down and stops at the same time that this signal is OFF (i.e., low).

After the stop, the robot enters a STOP (RETRY) state.

The robot will not work even if this signal is set ON after stop of the robot motion.

This signal is always effective, irrespective of the master mode selected by means of the MODE switch.

Timing chart

^{*} Duration covering from the start of one motion command to just before the start of next motion command is called the "1 segment".

- When the RUN command is executed after cancel of the break, the program restarts from the step next to the interrupted step.
- 2. RUN signal input is ineffective at the input of BREAK signal.
- 3. Unless this signal is used, always set it ON in the sequence circuit.

SVOFF (Servo OFF)

Address

G13C

Direction

TCmini → Main unit of robot controller

Function

Turns off the servo driver main power from the TCmini.

While this signal is OFF (i.e, low), the servo power is turned off.

This signal is always effective, irrespective of the master mode selected by means of the MODE switch.

Timing chart

- 1. While this signal is OFF, the servo power cannot be turned on in any mode.
- 2. Unless this signal is used, always set it ON in the sequence circuit.

6.2 Main Unit of Robot Controller → TCmini

Main unit of robot controller → TCmini (H000 ~ R57F)

Holivide iviai	n unii	. 01 10	טטנ כ	OHILIO	ווכו –	7 101	11111111	11000	~ 1/0)/)							
HOW 16	Bit	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
How Gour Dour D	H00W																DOUT 1
H03W	H01W																
H04W	H02W																
H05W	H03W																
H106W	H04W																
H06W 148	H05W																
H10W	H06W																
H10W	H07W																
H12W	H10W									OUT8	OUT7	OUT6	OUT5	OUT4	OUT3	OUT2	OUT1
H13W	H11W																
H13W	H12W																
H14W	H13W									_			INT		ACK		_
H17W	H14W				Dagani	ad area											
H21W	~ H17W				Keseiv	eu area											
H21W	H20W																
H22W																	
H22W DOUT	H21W																
H23W	H22\N/								DOUT		DOUT						
H24W DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT	1122 V V																
H24W DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT	H23W										355		353				
H25W DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT	H24W	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT
H26W		DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT
H27W		DOUT				DOUT											
H27W 464 463 462 461 460 459 458 457 456 355 454 453 452 451 450 449	1 12000	_		_													
Bit F E D C B A 9 8 7 6 5 4 3 2 1 0	H27W																
	Bit	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0

H000 ~ H27F:

Signifies an exclusive input relay which receives an output signal from the main unit of the robot controller.

The ON/OFF is read at I/O processing of every scan cycle.

This relay can be used as the source of contact input information and data register in the sequence program. It cannot be used as the coil.

Relays in the shaded areas are reserved for future extension of the system functions. Values are undecided and cannot be used.

* H108 to H10F are optional signals for specific customers.

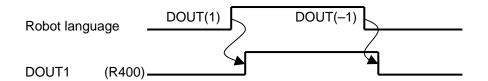
DOUT1 ~ 64, DOUT101 ~ 164, DOUT301 ~ 364, DOUT401 ~ 464

Address

H000 ~ H07F, H200 ~ H27F

Direction

Main unit of robot controller → TCmini


Function

Interface relay corresponding to the robot's DOUT command.

It turns on and off when the I/O status has changed by the DOUT command, or AUX (auxiliary signal) operation or I/O (external I/O signal display) operation through the teach pendant.

This relay is output, irrespective of the master mode selected by means of the MODE switch.

Timing chart

Remarks

Though the relay name is DOUT, it is an input signal from the TCmini.

HANDOUT1 ~ 8

Address

H100 ~ H107

Direction

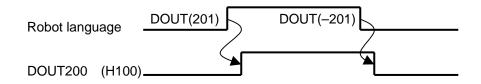
Main unit of robot controller → TCmini

Function

Interface relay corresponding to the robot's DOUT command.

It turns on and off when the I/O status has changed by the DOUT command, or AUX (auxiliary signal) operation or I/O (external I/O signal display) operation through the teach pendant.

HANDOUT1 ~ 8 cannot be reset by the DO_RST signal or output signal reset operation through the teach pendant.


This relay can be turned on and off manually on the exclusive hand monitor screen. (See Para. 12.3 of Operator's Manual.)

Each signal corresponds to the DOUT command as shown below.

Signal name	Relay address	Command
HANDOUT1	H100	DOUT201
HANDOUT2	H101	DOUT202
HANDOUT3	H102	DOUT203
HANDOUT4	H103	DOUT204
HANDOUT5	H104	DOUT205
HANDOUT6	H105	DOUT206
HANDOUT7	H106	DOUT207
HANDOUT8	H107	DOUT208

This relay is output, irrespective of the master mode selected by means of the MODE switch.

Timing chart

Remarks

Though the relay name is HANDOUT, it is an input signal from the TCmini.

SEQPAR1 ~ 8

Address

H110 ~ H117

Direction

Main unit of robot controller → TCmini

Function

Interface relay corresponding to the robot's user parameter ([U15] Sequence parameter).

When the power is turned on, parameter values are set in respective relays.

If you form a circuit that allows access to this relay, the sequence motion can be changed by the user parameter, without changing over the sequence.

Use example

```
H110(SEQPAR1) Y100

H110(SEQPAR1) Y101

( )—
```

The destination changes with the setting of user parameter [U15].

Remarks

The sequence parameter should be set in [U15] of USER.PAR.

```
[U15] Sequence Parameter (User I/O mode only)
= 0 0 0 0 0 0 0 0
```

Set in the order of R510, R511, R512, R513, R514, R515, R516 and R517.

0 : OFF 1 : ON

EMG_ST

Address H130

Direction Main unit of robot controller → TCmini

Function Interface relay indicating the state of the EMERGENCY stop pushbutton switch. It turns off when the emergency stop is affected.

This relay is output, irrespective of the master mode selected by means of the MODE switch.

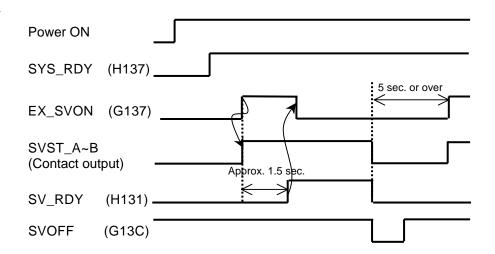
Timing chart

EMERGENCY stop pushbutton switch

EMG_ST (H130)

SV_RDY

Address H131


Direction Main unit of robot controller → TCmini

Function Interface relay indicating the robot servo status.

When the robot program can be started after servo ON, this relay also turns on.

This relay is output, irrespective of the master mode selected by means of the MODE switch.

Timing chart

Remarks

It takes about 1.5 seconds until RV_RDY turns on after servo power ON. Keep five (5) seconds or over from the servo power OFF to the next servo power ON.

ACK (Acknowledge)

Address H132

Direction Main unit of robot controller → TCmini

Function Interface relay indicating a response to the input of STROBE, PRG_RST, STEP_RST, CYC_RST and DO_RST.

When one of these signals is input, the ACK signal is sent back to inform that the appropriate processing has finished.

Timing chart

AUTORUN (H138)

Program selection (I),
STROBE, PRG_RST, etc.

ACK (H132)

Remarks

If two (2) or more signals shown above are input at the same time, only the signal which was input first is processed, then the ACK signal is output. TEACH (Teach Mode ON)

INT (Internal Automatic Mode ON)

EXTSIG (External Automatic Signal Mode ON)

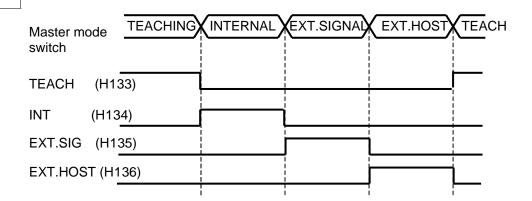
EXT 232C (External automatic 232C Host Mode ON)

EXT ETHER (External ETHER Host Mode ON)

Address **H133 ~ H136, H13E**

Direction Main unit of robot controller → TCmini

Function Interface relay indicating the master mode status of the robot.


The master mode can be changed over by means of the KEY

switch equipped on the control panel.

In External Automatic (EXT) mode, the mode is selected by

the user parameters.

Timing chart

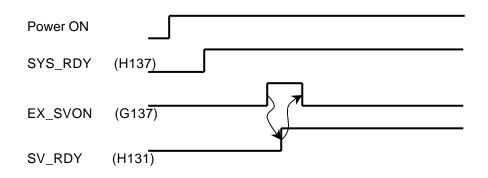
SYS_RDY (System Ready)

Address

H137

Direction

Main unit of robot controller → TCmini


Function

Interface relay indicating a status in which the controller can be operated normally.

When the internal startup processing has finished following power ON, this signal turns on.

This relay is output, irrespective of the master mode selected by means of the MODE switch.

Timing chart

AUTORUN (Auto Mode ON)

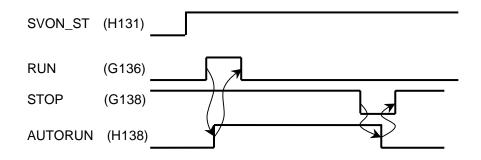
Address

H138

Direction

Main unit of robot controller → TCmini

Function


Interface relay indicating that the robot is working in the automatic operation mode.

This signal remains on as long as the robot is working in the automatic operation mode.

Note:

The automatic operation stated above signifies a status of program execution (RUN) in the INTERNAL (i.e., internal automatic mode), EXT.SIGNAL (i.e., external automatic signal mode) or EXT.HOST (i.e., external automatic host mode).

Timing chart

Remarks

This signal is not output during the TEACHING mode.

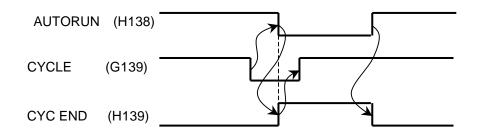
CYC_END (Cycle End)

Address

H139

Direction

Main unit of robot controller → TCmini


Function

Interface relay indicating the finish of program execution.

This signal turns on after the stop of 1-cycle automatic operation only when the cycle operation mode is selected and an automatic operation is executed.

This relay is output, irrespective of the master mode selected by means of the MODE switch.

Timing chart

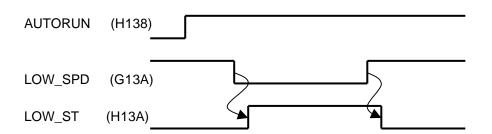
Remarks

This relay turns off when the program execution (RUN) mode takes effect.

It turns on when the cycle operation has been stopped by the STOP, BREAK or ALARM signal.

LOW_ST (Low Speed Mode ON)

Address H13A


Direction Main unit of robot controller → TCmini

Function Interface relay indicating that the robot is operating in the low speed mode.

It turns on while the robot is working in the low speed mode by the input of LOW_SPD (interface relay).

This relay is output, irrespective of the master mode selected by means of the MODE switch.

Timing chart

CYC_ST (Cycle Mode ON)

Address

H13B

Direction

Main unit of robot controller → TCmini

Function

Interface relay indicating that the robot is operating in the cycle mode.

It turns on while the robot is working in the cycle mode by the input of CYCLE (interface relay) or by the operation through the teach pendant.

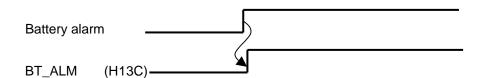
This relay is output, irrespective of the master mode selected by means of the MODE switch.

Timing chart

BT_ALM (Battery Alarm)

Address	H13C
/ \uuii 000	11130

Direction Main unit of robot controller → TCmini


Function Turns on if a battery alarm has occurred in the robot controller.

The battery alarm comes in the following six (6) kinds.

1–049 Axis1 Battery alarm 1–065 Axis2 Battery alarm 1–081 Axis3 Battery alarm 1–097 Axis4 Battery alarm 1–113 Axis5 Battery alarm 1–145 MAIN Battery alarm

This relay is output, irrespective of the master mode selected by means of the MODE switch.

Timing chart

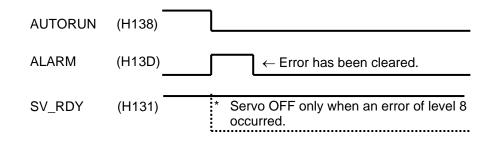
Remarks

If the battery alarm has occurred, replace the battery immediately, referring to the Maintenance Manual.

ALARM (Alarm)

Address	H13D

Direction Main unit of robot controller → TCmini


Function Interface relay indicating an error of level 2, 4 or 8 in the robot controller or robot.

This relay is kept ON during error detection and turns off after the error has been cleared.

For details on the errors, see the Operator's Manual.

This relay is output, irrespective of the master mode selected by means of the MODE switch.

Timing chart

6.3 Interface Register

This is an interface area for transferring data with the main unit of the robot controller.

Register	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
D40*						<u> </u>	•	PLC DATA R8	PLC DATA R7	PLC DATA R6	PLC DATA R5	PLC DATA R4	PLC DATA R3	PLC DATA R2	PLC DATA R1	
D41*				Reserv	ed area	ı		110	1117	INO	13	11.4	113	1\2	IXI	
D42*																
D43*																
D44*																
D45*				Reserv	ed area	ı										
D46*																
D47*															USER	
D50*																
D51*																
D52*																
D53*				_												
D54*				Reserv	ed area	1										
D55*																
D56*																
D57*																
D60*									PLC DATA W8	PLC DATA W7	PLC DATA W6	PLC DATA W5	PLC DATA W4	PLC DATA W3	PLC DATA W2	PLC DATA W1
D61*				Reserv	ed area	1							2011	2011	2011	2011
D62*									PSN_ W8	PSN_ W7	PSN_ W6	PSN_ W5	PSN_ W4	PSN_ W3	PSN_ W2	PSN_ W1
D63*									PSN_ J8	PSN_ J7	PSN_ J6	PSN_ J5	PSN_ J4	PSN_ J3	PSN_ J2	PSN_ J1
D64*									TRQ_ J8	TRQ_ J7	TRQ_ J6	TRQ_ J5	TRQ_ J4	TRQ_ J3	TRQ_ J2	TRQ_ J1
D65*									- 00	1 0,		_ ••	01	- 00		<u> </u>
D66* D67*	AL10	AL09	AI 08	AL07	AL06	AL05	AL04	AL 03	AL02	AL 01	ALNO	STEP	1			
D70*	ALTO	ALOS	ALOO	ALOT	ALOU	ALOS	ALOT	ALOS	ALUZ	ALOT	ALIVO	OILI				
D71*																
D72*																
D73*				Door	ed area											
D74*				Keserv	eu area	ı										
D75*																
D76*																
D77*																
Register	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0

STEP

Address **D674**

Direction Main unit of robot controller → TCmini

Function Used to indicate the line number of an active program.

> As the robot program is executed during execution of pre-analysis, the indicated line number may not coincide with real robot motion. This data can provide only a yardstick.

ALNO, AL01 ~ AL10

D675 ~ D67F Address

Direction Main unit of robot controller → TCmini

Function ALNO (D675) signifies the number of alarms currently generated.

> During alarm generation, relevant alarm number is indicated by AL01 (D136) ~ AL10 (D13F).

When the alarm of "8-014" has occurred:

D675: 1

D676: 8014 (decimal number)

USER

Address **D470**

Direction TCmini → Main unit of robot controller

Function Used to output a value to the 7-segment display on the user

panel.

The displayed value ranges from 0 to 65535.

PLCDATAR1 ~ 8

Address D400 ~ D407

Direction TCmini → Main unit of robot controller

Function Transfers ladder operation result and other data to the main unit of the robot controller.

> Transferred data can be referred to by the robot program. In the robot program, values can be read by system variables PLCDATAR1 ~ 8.

A value written in PLCDATAR* should be 0 ~ 65535. If it exceeds this range, it cannot be transferred accurately.

PLCDATAW1 ~ 8

Address D600 ~ D607

Direction Main unit of robot controller → TCmini

Function The TCmini can receive the operation results of the robot program.

In the robot program, values can be written to system variables PLCDATAW1 ~ 8.

A value written in PLCDATAW* should be 0 ~ 65535. If it exceeds this range, it cannot be transferred accurately.

PSN_W1 ~ 8

Address D620 ~ D627

Direction Main unit of robot controller → TCmini

Current position in the world coordinate system of robot can Function be received by the TCmini.

> This value is an integer in the range of –32768 ~ 32767 mm (deg). All fractions are ignored.

PSN_J1 ~ 8

Address D630 ~ D637

Direction Main unit of robot controller → TCmini

Function Current position in the joint coordinate system of robot can be received by the TCmini.

This value is an integer in the range of -32768 ~ 32767 mm

(deg). All fractions are ignored.

TRQ_J1 ~ 8

Address D640 ~ D647

Direction Main unit of robot controller → TCmini

Each axis torque value of the robot can be received with **Function** TCmini. The value is an integer of -32768 ~ 32767 in every

0.1%. The value of less than 0.1% is rounded down.

Section 7 PLC Language

7.1 Sequence Program

The TCmini supports sequence programs made according to the graphical programming method. They can be created by the user in any format.

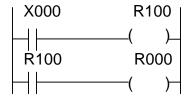
```
X000 Y010 T000 100

T000 X001 Y110 Y110
```

I/O processing

Batch refreshing of inputs and outputs is used for I/O processing.

(Before starting arithmetic operation, the input ON/OFF state is transferred to the data memory, and the arithmetic result of the data memory is transferred to the output device.)


Execution of user's program

On completion of I/O processing, the user's program is sequentially operated from the leading circuit.

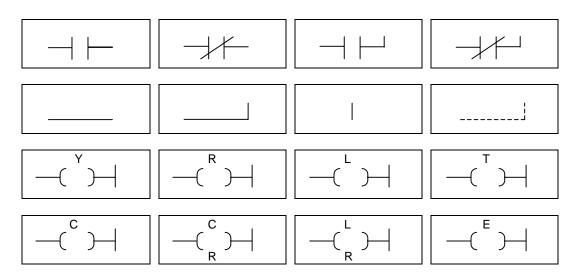
The operation is as follows:

- Sequentially on a circuit basis.
- From left to right on a column basis within one (1) circuit. (The input part is first operated, then the output part is processed.)
- The operation continues to the P. END instruction (program end instruction).
 The P. END instruction is automatically included at the end of the user's program.
 Thus only actually used words of the user's program are operated.
- Note 1: The coil instruction is written into the data memory every time the operation is executed and has an influence on the subsequent contacts. However, the output state remains unchanged until the output processing is executed in the pack after completion of entire operation.

Note 2: State change of the contact written before the coil occurs in the scan next to the one in which the coil state changed.

Coil R000 is turned on with delay of one (1) scan after X000 is ON.

If the order of the left circuit is replaced, R000 is turned on in the same scan as X000 ON.


As known from the above, if the circuit order is replaced, the operation result may differ.

7.2 Program Capacity and Length of Instruction Word

The TCmini instruction has 16 bits as the basic length. According to the type of instruction, five (5) types of word length (1-word, 2-word, 3-word, 4-word and 5-word) are available for the instruction length.

The program memory is Approx. 4000 words and secured according to each instruction.

1-word instruction

2-word instruction

Note: In addresses E000 ~ E03F, two (2)-word instructions are set.

3-word instruction

F*035

Increment

F*036

Decrement

F*040

Arithmetic left shift

F*041

Left rotate

F*042

Right shift

F*043

Right rotate

F*049

Subroutine start

F*058

Subroutine call

F*059

Subroutine return

F*063

1-scan ON

4-word instruction

F*000

Data transfer

F*001

Constant set

F*002

High-order 8 bits data transfer

F*010

 $\begin{array}{c} BIN \rightarrow BCD \\ conversion \\ without \ sign \end{array}$

F*011

 $\begin{array}{c} BCD \rightarrow BIN \\ conversion \\ without sign \end{array}$

F*012

BIN → BCD conversion with sign

F*013

BCD → BIN conversion with sign

F*045

4 → 16 decoder

5-word instruction

F*006

Block transfer by constant designation F*009

Data extraction and distribution

F*020

BIN addition

F*021

BIN addition with carry

F*022

BIN subtraction

F*023

BIN subtraction with borrow

F*024

BIN multiplication without sign

F*025

BIN division without sign

F*032

Logical product

F*033

Logical sum

F*034

Exclusive logical sum

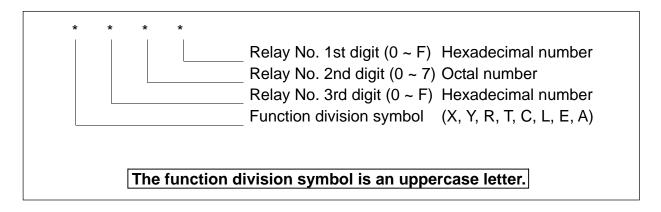
F*037

Comparison without sign

F*038

Comparison with sign

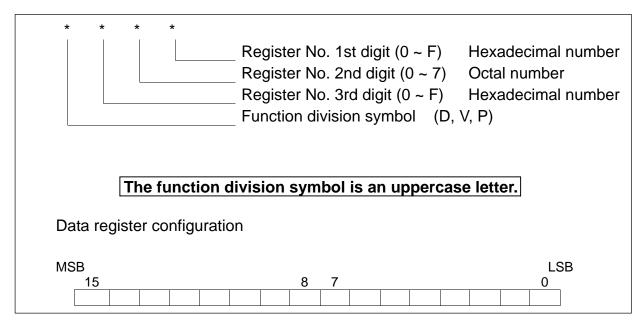
F*047


Bit test by constant designation

7.3 Address

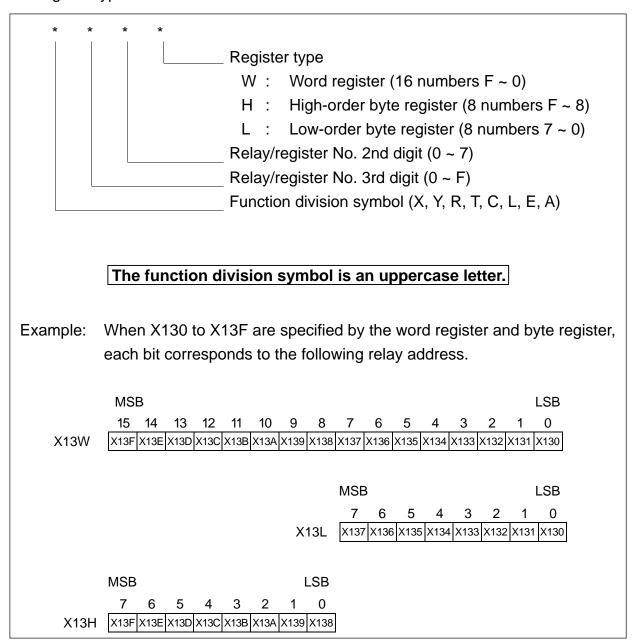
(1) Relay address

The relay address consists of a relay number following the function division symbol.

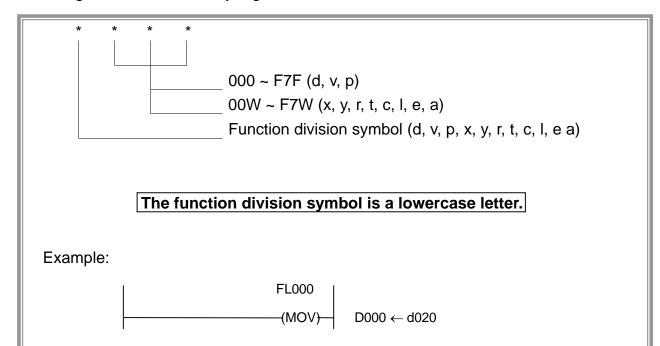

The I/O relay address corresponds to actual relay mounted position, and the other relays correspond to physically absent devices. The relay address is assigned for each I/O number (1 bit).

(2) Data register address

The data register address is represented in the same manner as the relay address.


The relay address is assigned on a number (1 bit) basis while the data register address is assigned on a word (16-bit) basis.

(3) Byte register address and word register address of relay area


The relay area can be used as a byte register on an eight (8)-number basis and as a word register on a 16-number basis.

For the register address, relay number 1st digit of the relay address signifies the register type instead.

(4) Indirect register address

In the indirect register, an address can be identified by the specified register content (data) and a content under this address can be handled as the word data. The function division symbol at the head of the indirect register address is represented by a small letter (data register or relay register) and the remaining data of the same address are expressed in the same manner as in the data register address or relay register address.

If 100H is specified for D020 in the above circuit, for instance, d020 signifies D100. (See the correspondence table below.) Thus, in this circuit, data in D100 is transferred to D000.

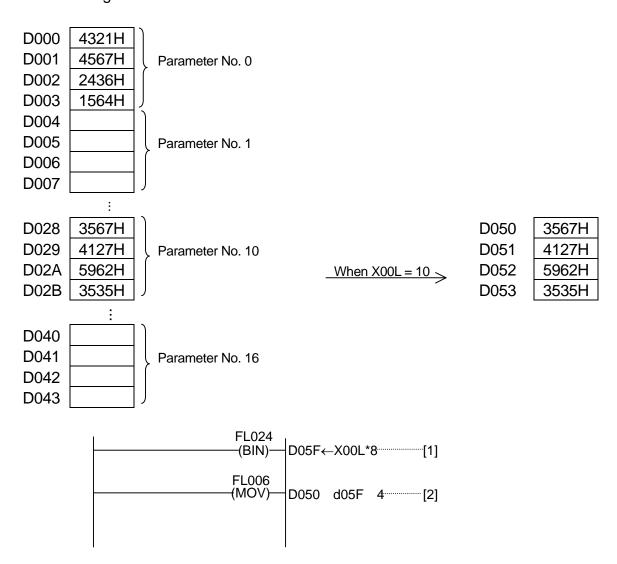
E register

Corresponding address

E00W

E01W

E02W E03W


Correspondence table of data value and indirect address

	Corresponding		Corresponding	
Data value (Hex.)	address	Data value (Hex.)	address	Data value (Hex.)
	gister	X/Y register		E regi
0000H	D000	3000H	X/Y00W	3480H
(0001H)		(3001H)	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(3481H)
0002H (0003H)	D001	3002H (3003H)	X/Y01W	3482H (3483H)
(000311)		(300311)		3484H (3485H)
001EH		300EH		3486H
(001FH)	D00F	(300FH)	X/Y07W	(3487H)
0020H	D010	3010H	X/Y10W	
(0021H)	DOTO	(3011H)		
*	¥		⊌	
00FEH	D07F	301EH	X/Y17W	
(00FFH)		(301FH)	.,	
0100H	D100	R reg	gister	
(0101H)		3100H		-
*	y	(3101H)	R00W	
01FEH		3102H		
(01FFH)	D17F	(3103H)	R01W	
				1
P reg	gister	~	*	
1000H	P000	310EH	R07W	
(1001H)	1 000	(310FH)	107 VV	
1002H	P001	3110H	R10W	
(1003H)		(3111H)		
101EH		311EH		1
(101FH)	P00F	(311FH)	R17W	
1020H		· · · · · · · · · · · · · · · · · · ·		
(1021H)	P010	T/C re	egister	
	⊌	3180H	T/C00W	
	8	(3181H)	1/0000	
10BEH	P05F	3182H	T/C01W	
(10BFH)		(3183H)		-
1800H	gister		¥	
(1801H)	V000	(318BH)	T/C05W	
1802H		ì		1
(1803H)	V001	Lreg	gister	
		31C0H	1.0014/	
*	⊌	(31C1H)	LOOW	
181EH	V00F	31C2H	L01W	
(181FH)	V 001	(31C3H)	LOTVV	
1820H	V010	A register		
(1821H)			J	-
*	L	31E0H (31E1H)	A00W	
18BEH		(STETIT)		1
(18BFH)	V05F	*	⊌	
(/		31FCH	A401A1	1
		(31FDH)	A16W	
				-

A register signified by the indirect register is identified from the correspondence table given in Para. 7.3 (4) above. As data values and addresses are arranged consecutively for each register, this function is very useful for a program requiring table processing.

Example: Assume that positioning parameter information consisting of four (4) words per block is set in registers D000 to D043. To set in registers D050 to D053 the four (4)-word positioning information corresponding to the parameter number (0 ~ 16) input in external input register X00L, program as follows.

<Positioning information table>

<Descriptions on program>

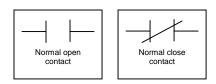
- ① The parameter number (X00L) is multiplied by the number of bytes per block (in this example, 4 words = 8) to identify a relative address from the table.
- ② Four (4)-word data are transferred in block into D050 and after, taking the data value set in D05F as the start address (in this example, either of D000 ~ D043).

7.4 Configuration of Instruction Word

As the TCmini uses the ladder symbolic direct input method for the programming language, it has the instructions corresponding to the circuit diagram.

Configuration of 1-word instruction

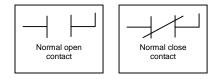
Instruction code	Function division symbol	Address
\downarrow	\downarrow	\downarrow
	X: Input Y: Output	000 ~ 17F Note: Same addresses are shared by X and Y.
	R: Internal relay	000 ~ 17F
	R: Interface relay	200 ~ 57F
	L: Latch	000 ~ 01F
	T: Timer	000 ~ 05F
	C: Counter	Note: Same addresses cannot be shared by T and C.
	A: Special auxiliary relay	000 ~ 16F
	Y: Output	000 ~ 17F
()	R: Internal relay	000 ~ 17F
	R: Interface relay	200 ~ 37F
	L: Latch	000 ~ 01F
— (L)— R	L: Latch reset	000 ~ 01F
T, C	T: Timer	000 ~ 05F
()	C: Counter	Note: Same addresses
		cannot be shared by T and C.
—(C: Counter reset	000 ~ 05F Note: Same addresses can be shared by T and C.

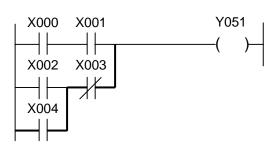

	None	None
(P, END)		

Configuration of 2-word instruction

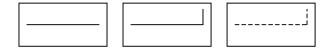
Instruction code	Function division symbol	Address
\downarrow	\downarrow	\downarrow
E	E: Differentiating relay	000 ~ 03F

7.4.1 Contact

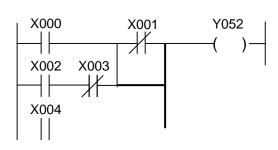

(a) Serial connection operation


The operation serially connected to the operation result so far is made (logical product: AND).

(b) Branch-connected operation



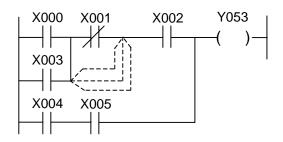
The operation branch-connected (in parallel) with the operation result so far is made (logical sum: OR).



7.4.2 Unconditional Connection

(a) Unconditional connection

The operation result so far is operated serially, serially and in parallel, and in parallel.

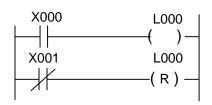

7.4.3 Blank

(a) Blank

Corresponds to the part enclosed by dotted line in the figure. It can be ignored at programming.

This instruction is effective to delete an instruction at circuit correction.

7.4.4 Internal Relay

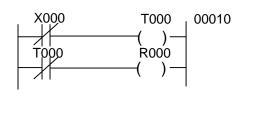

Symbol	——(R1)—	X000 X001 R000 ()—
Function	Turned ON when the input signal is ON.	X002
Executing condition	The input signal must be ON.	
R1 range	R000 ~ R17F (256 Nos.) R200 ~ R37F (Interface relay)	When inputs X000 and X001 are turned ON or when X002 is turned ON, R000 is turned ON.

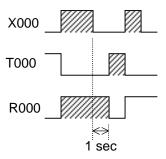
7.4.5 Latch Relay

Symbol	Latch condition Reset input () — (R) —	X000 L000 ()— X001 L000 (R)—
Function	Kept ON until the reset input is ON when the latch condition is turned ON.	When X000 is ON with X001 set OFF, L000 is ON and this state is held until X001 is ON.
Executing condition	The latch condition must be turned ON with the reset input OFF.	x000
L1 range	L000 ~ L01F (32 Nos.)	X001
Power failure backup function	Power failure can't be backed up through the entire area. Depending on the parameter, it is possible to make do memory.	L000 ——

Note: At program loading, compulsively set a required latch relay.

<Power failure backup and input>

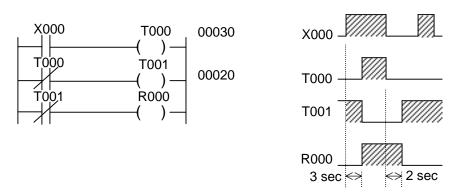



In the circuit shown left, as the " " input contact is used for the reset input, the power may not be backed up due to time lag between input power OFF and PC power OFF.

7.4.6 Timer

Symbol	T1 K2	X000 T000 0050
Function	Relay T1 is turned ON after the time specified by constant K2 has passed.	T000 is ON five (5) seconds after X000 is ON.
Executing condition	The input signal must be ON.	x000
T1 range (BIN)	T000 ~ T05F (96 Nos.) 0.1 ~ 3276.7 sec.	T000
	Note: Shared with counter address.	5 sec
Set value K2 range	1 ~ 65535 1H ~ FFFFH (BIN data)	The timer set value is set in a program, which can be changed
Timer set value register	V000 ~ V05F (96 Nos.) Shared with counter.	through data transfer to V000 to V05F.
Timer current value register	P000 ~ P05F (96 Nos.) Shared with counter.	Backward timer

• OFF delay timer circuit

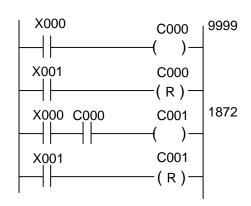


When X000 is ON, R000 is ON. X000 is OFF. One (1) second after the set time on T000 following X000 OFF, R000 is OFF.

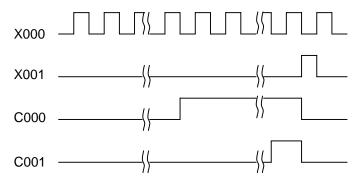
It should be noted that R000 is ON for the T000 set time after the PC runs by power ON.

• ON/OFF delay timer circuit

When X000 is ON, R000 is turned ON three (3) seconds after the set time of T000. R000 is OFF two (2) seconds after the set time of T001 following X000 OFF.


The timer is of a backward type and the current value is equal to the set value at start and zero (0) at ON.

7.4.7 Counter


Symbol	Counter input Reset input C1 K2 C1 C1 (R)	X000 C000 0003 () C000 (R)
Function	Relay C1 is turned ON when pulses are input by the number specified by constant K2.	x000
Executing condition	When the counter input rises from OFF to ON.	X001 ———————————————————————————————————
C1 range	C000 ~ C05F (96 Nos.) Note: Shared with timer address.	C000
Set value K2 range	1 ~ 32767 1H ~ FFFFH (BIN data)	The counter set value is set in a program, which can be changed
Counter set value register	V000 ~ V05F (96 Nos.) Shared with timer.	through data transfer to V000 to V05F.
Counter current value register	P000 ~ P05F (96 Nos.) Shared with timer.	Backward counter

The counter current value register is set to zero (0) at program loading. Reset the counter coil to the set value.

• Large-capacity counter circuit

With countup of C000, C001 is counted. C001 is turned ON after counting is made (9999 + 1872 - 1 = 11870).

7.5 Standard Application Instruction

The TCmini has a total of thirty-two (32) kinds of application instructions. In the user's program, up to 512 application instructions can be used.

7.5.1 Selection of Executing Condition

The TCmini allows selection of the condition for executing an application instruction. When executing the application instruction while the condition is set ON, write "FL***" (L: level). To execute the application instruction at start, write "FE***" (E: edge).

Example:

When condition X000 is ON, data is transferred from D100 to D000 at each scanning.

Only in one (1) scan in which condition X000 has changed from OFF to ON, data is transferred from D100 to D000.

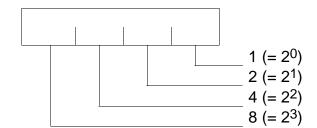
7.5.2 Arbitrary Setting of Argument

In the TCmini application instruction, the type of argument (i.e., direct register, indirect register or constant) can be selected arbitrarily. (However, the type of argument is predetermined for some application instructions.)

Example:

7.5.3 Numeric Expression

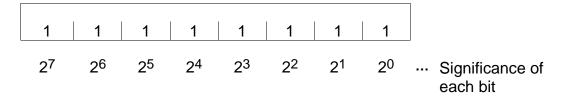
(1) Binary code


A numeric value represented by two (2) states of "0" (OFF) and "1" (ON) is called the binary code.

In a decimal number, a number increases to 0, 1, 2, ... 8, 9. When it reaches 10, it is carried. In a binary number, a number next to 1 is carried to 10. Binary number 10 corresponds to 2 in the decimal notation.

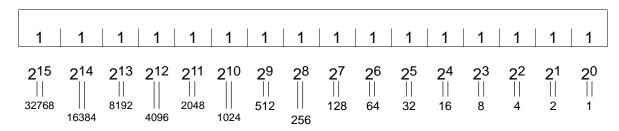
Decimal number	0	1	2	3	4	5	6	7	8
Binary number	0	1	10	11	100	101	110	111	1000

When the decimal number is compared with the binary number, binary numbers corresponding to 2, 4 and 8 in decimal notation are carried.


The decimal number is carried when it is 1, 10, 100 and 1000. When these numbers are expressed in power, they are 10^0 (= 1), 10^1 (= 10), 10^2 (= 100) and 10^3 (= 1000). These are called the "significance" of each digit of decimal numbers. From the above table, each digit of binary number is as shown below.

Each digit has the significance of 2. Each digit of binary number is called the "bit". A set of eight (8) bits is called the "byte", and a set of 16 bits is called the "word". In the TCmini, an eight (8)-bit length register is called the "byte register".

Now let's investigate the range of byte numeric values.


When all eight (8) bits are 1, a byte is the maximum value.

Summing up the significances of each bit,

$$2^{0} + 2^{1} + 2^{2} + 2^{3} + 2^{4} + 2^{5} + 2^{6} + 2^{7}$$

= 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128
= 255

Likewise, a word (16 bits) is as follows:

Summing up the significances of all bits, it can be expressed as a decimal number of $0 \sim 65535$. Each register of the TCmini can handle the numeric values in binary notation of this range.

Additionally, the set value and current value of timer and counter are processed as the binary number.

(2) Negative expression of binary number (Expression of complement of 2)

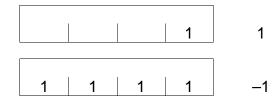
In Para. (1) above, all binary numbers are positive. Then how is a negative binary number expressed? If the binary number is decreased one by one,

			Ì
1	1	1	7
1	1	0	6
1	0	1	5
1	0	0	4
	1	1	3
	1	0	2
		1	1
		0	0

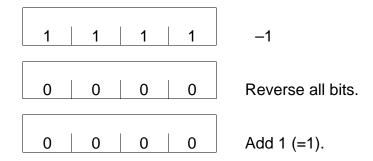
From the above, you can see that a borrow takes place at the time of 4 \rightarrow 3 and 2 \rightarrow 1 in decimal notation.

If there is a "1" at a position higher by one when decreasing 1 from 0, the expression is as follows:

0

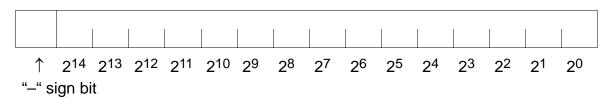

-1

-2


1 Borrow

			0
1	1	1	1
1	1	1	0

Let's compare 1 with -1.

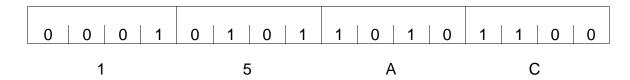

All bits of -1 are reversed (1 \rightarrow 0) and -1 added with 1 becomes 1. On the contrary, reverse all bits of 1, then add 1. The result is -1.

This operation is called taking the complement of 2, which is used for conversion from positive to negative and vice versa.

In the above example, the highest-order digit is 1 when the number is negative and 0 when it is positive. This highest-order digit is called the "sign bit", and four (4) bits in the above example can be expressed as a decimal number of –8 to 7.

For a word (16 bits), the expression is as shown below.

It can handle a decimal number of -32768 ~ 32767.


The TCmini can handle the numeric numbers in this range as a signed binary number. The programmer and CRT programmer can specify the numeric values in this range as a decimal number. In the CPU, a specified numeric value is converted into a signed binary number and processed. A signed binary number is handled only in the word register, and the byte register handles a word as a positive integer $(0 \sim 255)$.

(3) Hexadecimal number

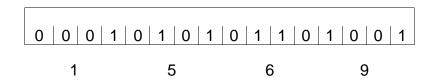
When 0 and 1 of binary number are arranged, the expression becomes longer and is difficult to read. To solve this problem, four (4) bits are taken as one (1) unit. A hexadecimal number has four (4) bits, and a carry takes place at 16 after $2^0 + 2^1 + 2^2 + 2^3 = 1 + 2 + 4 + 8 = 15$. It uses numbers 0 to 9 and alphabets A to F.

Binary number	Decimal number	Hexa-decima I number	Binary number	Decimal number	Hexa-decima I number
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	10	А
0011	3	3	1011	11	В
0100	4	4	1100	12	С
0101	5	5	1101	13	D
0110	6	6	1110	14	Е
0111	7	7	1111	15	F

Example: A word (16 bits) can be expressed by a four (4) digit number in hexadecimal notation.

(4) Binary coded decimal (BCD)

In the decimal number, 10 comes after 0, 1, ... 9 and a carry takes place. A number having the function carrying 9 to 10 like the binary number is called the binary coded decimal (BCD).


Decimal number	Binary number BCD		CD
0	0		0
1	1		1
2	10		10
3	11		11
4	100		100
5	101		101
6	110		110
7	111		111
8	1000		1000
9	1001		1001
10	1010	1	0000
11	1011	1	0001
:	:		:
99	1100011	1001	1001

Carry

A binary number is classified by four (4) bits, and combinations of 1010 or more (1010 ~ 1111) are banned to cause a carry.

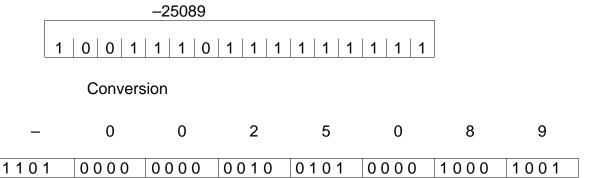
Each bit is expressed in the range of 0 to 9 of decimal number.

Example:

Thus, the BCD expression can be regarded as a variation of hexadecimal number. The BCD numeric value can also be specified in hexadecimal notation. (Only 0 to 9 for each digit.)

The content of the register in which BCDs are stored can be displayed in hexadecimal notation.

(5) Negative expression of binary coded decimal (BCD)


A negative of BCD is handled as a sign + absolute value. In the TCmini, it can be handled in the two (2) instructions of $\boxed{F*012}$ (BIN \rightarrow BCD conversion with sign)

and $\boxed{F^*013}$ (BCD \rightarrow BIN conversion with sign).

The negative is set as the sign digit to "13 (1101)", the value not found in the BCD expression, and handled only as a long word (32-bit, BCD eight (8) digits). The eighth (8th) digit is assigned for the sign digit.

This is because the word (BCD, four (4) digits) is exceeded as a result of BCD conversion when the word numeric range is –32768 to 32767.

Example: Signed BIN to BCD conversion by F*012

Sign digit: Negative (–) for 1101 and positive (+) for 0000

7.5.4 Operation Flag

(1) Type

The following four (4) types of flags are assigned to the relays (special auxiliary relays) to use the operation result in the coming operation.

Relay address	Flag name	Function
A000	Carry flag	Turned ON if there is a carry or borrow as a result of operation.
A002	Overflow flag	Turned ON if there is an overflow as a result of operation.
A006	Zero flag	Turned ON if the operation result is zero (0).
A007	Sign flag	Turned ON when the MSB (i.e., highest-order bit) of the word register is 1 as a result of operation.

(2) Instruction with change in operation flag

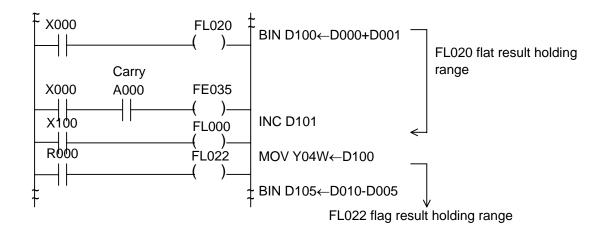
In the following ten (10) kinds of instructions, the flag changes with the operation result.

Туре	Code	Function	
BIN operation	F*010	$BIN \rightarrow BCD$ conversion	
	F*020	BIN addition	
	F*021	BIN addition with carry	
	F*022	BIN subtraction	
	F*023	BIN subtraction with borrow	
	F*025	BIN division	
Bit shift	F*040	Arithmetic left shift	
	F*041	Left rotate	
	F*042	Right shift	
	F*043	Right rotate	

The flag will not change in other than the above instructions.

(3) Cautions on flag

The carry flag and zero flag may change illegally when operated by the byte register.

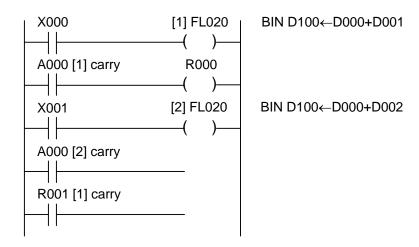

Example:

In the operation between byte registers, high-order eight (8) bits of word register are taken as zero (0) and operated as the byte register. Thus, even if the byte register is specified for the destination and a result error is checked by the carry bit, a carry will not take place at the seventh (7th) bit, but the 15th bit becomes the carry flag. In the example above, the carry flag is zero (0).

The sign flag indicates the state of the highest-order bit (15th bit) of the word register. Therefore, the positive or negative sign flag makes sense only when the range of numeric values is handled as a signed binary code (–32768 ~ 32767) by the user.

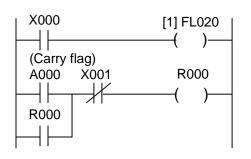
(4) Available range of operation flag

A flag in the user's program maintains its state during the time from a flag operating instruction to the next flag operating instruction.



Note: If a flag operating instruction is not encountered to the program end, the flag keeps its state until another flag operating instruction appears first in the program during the next scan.

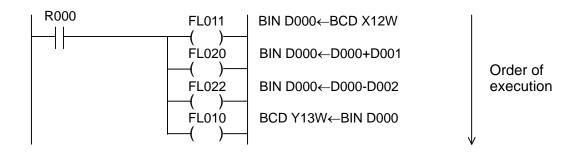
(5) Flag holding


Through the flag state is maintained until the next flag operating instruction, it is changed thereafter.

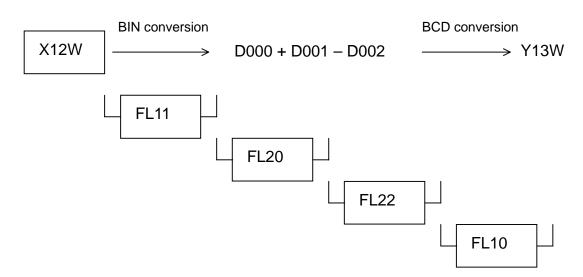
When the flag state must be held during one (1) scan cycle, move and hold it at the coil (internal relay, output relay, etc.).

R000 can maintain the flag state in one (1) scan cycle until the flag state is changed by the next [1] FL020 instruction. However, when X000 is turned OFF, the flag state of the flag operating instruction located in the circuit before [1] prevails.

To monitor and confirm the flag state through the peripheral equipment, it is convenient to make self backup or use a latch relay. If held by the coil, the flag state can be maintained only in one (1) scan cycle.


BIN D100←D000+D001

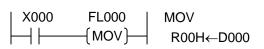
The carry flag state commanded by [1] FL020 is maintained until X001 is turned ON.


Or

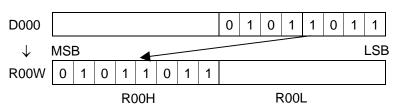
7.5.5 Order of Execution

If the standard application instruction is programmed as a multi-output under the same operating condition, it is executed in the order of top to down in the circuit diagram. Thus it is possible to transfer the operation result to the next operation.

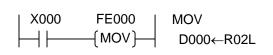
When R000 is ON:

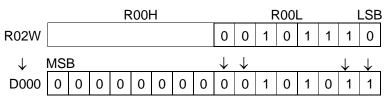

Register D000 is used as the temporary operation result storing register.

7.5.6 Descriptions on Standard Application Instruction


F*000 Data Transfer

		Argument		nt		
Symbol	Code	Ag.1	Ag.2	Ag.3	X000 FL000 MOV	
MOV	F*000	D_1	D_2			
		d_1	d_2			
Function	Transfers the content of the			_	When input X000 is ON, the content of register	
		register specified by Ag.2 to the			D001 is transferred to register D005.	
	register s	egister specified by Ag.1.				
Content of	$MOV \begin{bmatrix} D_1 \\ d_1 \end{bmatrix} \leftarrow \begin{bmatrix} D_2 \\ d_2 \end{bmatrix}$			D001 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0		
operation				MSB LSB		
	(u ₁) (a	2 J		↓ Lob	
Range of	Direct register: Entire range			nge	Poor 0 0 4 0 4 0 4 0 0 4 0 0	
argument 1	Indirect register: Entire range			range	D005 0001001001001001000	
Range of	Direct register: Entire range			nge		
argument 2	Indirect re	ndirect register: Entire range				
After operation					Both the word register and byte register can	
 Ag.1 content 		specified by Ag.2.			transfer the data.	
 Ag.2 content 	Unchang					
 Flag 	Unchang	ed				

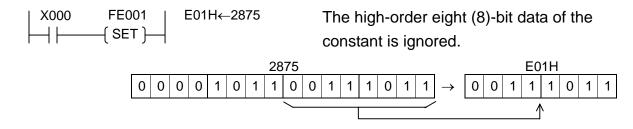

 When register D₁ is the byte register (R00H, Y01L, etc.) and register D₂ is the word register (R00W, Y01W, etc.),


When X000 is ON, the low-order eight (8)-bit data of D000 is transferred to the eight (8) bits of R00H.

When register D₁ is the word register and register D₂ is the byte register,

When X000 has turned ON from OFF, the eight (8)-bit data of R02L is transferred to the low-order eight (8) bits of D000. The high-order eight (8)-bit data is zero-cleared.

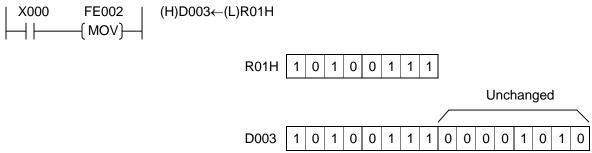
Note: For data transfer of two (2) words or more, use the block transfer instruction by F*006 or F*008.

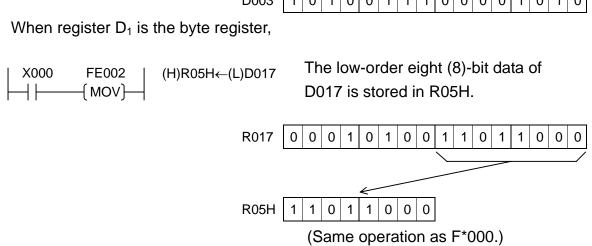

When the indirect register is used,

When X000 is ON, the content of D100 is transferred to the address which is identified as per the data set in D002. (If #100H is set in D002, D100 is the address.)

F*001 Constant Set

		Argument		nt		
	Code	Ag.1	Ag.2	Ag.3		
Symbol					X000 FE001 SET	
SET	F*001	D_1	K ₂			
		d ₁				
Function	Stores the constant specified by			When input X000 has turned ON from OFF, binary		
	Ag.2 in the register specified by		ied by	constant 1120 is stored in register D100.		
	Ag.1.					
Content of	(D	`			Constant 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0	
operation	SET D ₁	$\leftarrow K_2$			(1120) MSB LSB	
	(a ₁	J			•	
Range of	Direct reg	gister:	Entire ra	nge		
argument 1	Indirect register: Entire range		range	D100 0 0 0 0 1 0 0 1 1 0 0 0 0		
Range of	Constant: -32768 ~ 32767		' 67			
argument 2					(1120)	
After operation					When the register is the byte register, the	
 Ag.1 content 	Value of	constant	K_2		low-order eight (8)-bit data of the constant is stored	
 Ag.2 content 	Unchang	ed			in the register. (The high-order eight (8)-bit data	
• Flag	Unchang	ed			of the constant is ignored.)	

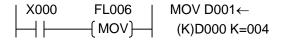

• When register D₁ is the byte register,



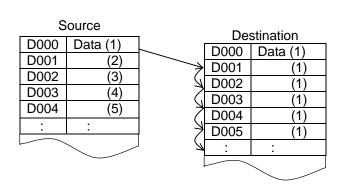
F*002 High-Order 8-Bit Data Transfer

		, A	Argumer	nt	
Symbol	Code	Ag.1	Ag.2	Ag.3	X000 FE002 (H)D005←
MOV	F*002	D ₁	D ₂		(MOV) (L)D013
		d ₁	d_2		
Function	Transfers				When input X000 is ON, the low-order eight (8)-bit
	(8)-bit da				data of register D013 is transferred to the
	specified	, ,			high-order eight (8) bits of register D005.
	high-orde				
	register s	pecified	by Ag.1	•	D100 0 0 1 0 1 1 0 0 0 1 1 1 1 0 1 0 1
Content of	(D ₁)	D_2) ",		D100 0 0 1 0 1 1 0 0 0 0 1 1 1 0 0 1 0 1
operation	$\begin{bmatrix} D_1 \\ d_1 \end{bmatrix} (H$	(d_2)	J (L)		MSB LSB
Range of	Direct reg	gister:	Entire ra	nge	
argument 1	Indirect re	egister:	Entire i	range	
Range of	Direct reg	gister:	Entire ra	nge	D100 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 1
argument 2	Indirect re	egister:	Entire i	range	/
After operation					1
 Ag.1 content 	The high-				The low-order eight (8) bits of D005 remain
 Ag.2 content 	set as the		_	` '	unchanged after operation.
 Flag 	bits of the	e data va	alue spe	cified	
	by Ag.2.				
	Unchang				
	Unchang	ed			

When register D₂ is the byte register,

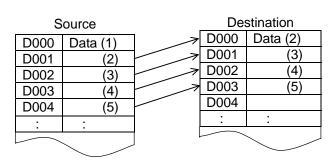


F*006 Block Transfer (Constant Designation)


		,	Argumer	nt	
	Code	Ag.1	Ag.2	Ag.3	X000
Symbol			_		MOV (K)R03W K=002
MOV	F*006	D_1	D_2	K ₃	(
		d ₁	d ₂		<u> </u>
Function	Transfers				When input X000 is ON, the two (2)-word data
	K3 word				stored in registers (R03W, R04W) headed by
	by the on				register R03W is transferred to register D000 and
	registers			ne	after (D000, D001). (2 words)
Content of	specified				
operation	D_2 D_2+1	¹	₂ +K ₃ -1 +K ₃ -1		R03W 0 0 0 0 1 1 0 0 0 0 1 1 1 0 1
operation	$d_2 \int d_2 + 1$	$\mathcal{I} C_{G_2}$	+N ₃ -1 2		
	(D) (D)	1) (D)	22 (D)	W 45	R04W 1 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1
	$\begin{bmatrix} D_1 \\ d_1 \end{bmatrix} \begin{bmatrix} D_1 + 1 \\ d_1 + 1 \end{bmatrix}$	' D ₁ +	$\begin{bmatrix} 2 \\ 2 \end{bmatrix} - \begin{bmatrix} D_{1} \\ D_{2} \end{bmatrix}$	FN3-1	MSB LSB
	(u ₁) (u ₁ +1) Cu ₁ +	2) (D ₁	-113-12	Constant 002 (2 words)
Range of	Direct reg	gister:	Entire ra	nge	D000 0 0 0 0 1 1 0 0 0 0 1 1 1 0 1
argument 1		d design			
	Indirect re			range	
		d design			D001 1 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1
Range of	Direct reg	•		nge	
argument 2	`	d design	,		
	Indirect re			range	
Dongs of	, ,	d design			If the decimantian is sufficient the register area data
Range of	Constant	: 0~2	55		If the designation is outside the register area, data
argument 3					transfer is not performed.
After operationAg.1 content	Data valu	ıa enacif	fied by A	a 2	Note: Even if the byte register is specified for the
 Ag.1 content Ag.2 content 	Unchang		ieu by A	y. ∠ .	source and destination registers, the word
 Ag.2 content Ag.3 content 	Unchang				register takes effect.
• Flag	Unchang				rogistor takes effect.
9	J.10114119				

If the same addresses are used both for the source and destination registers,

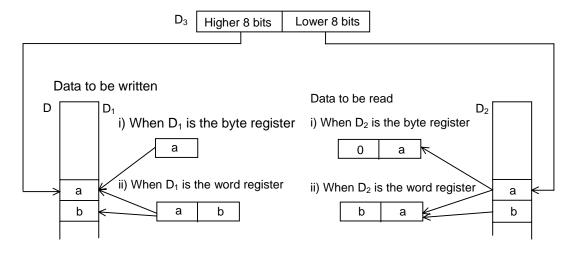
a) When register D_1 address > register D_2 address,



After operation, the same value is set in D000 to D004.

b) When register D_1 address < register D_2 address,

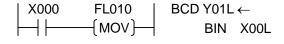
After operation, the content of each register is transferred into the registers with an address number just preceding the number of the source register, respectively.



F*009 Data Extraction and Distribution

		ŀ	Argumen	nt	
	Code	Ag.1	Ag.2	Ag.3	X000
Symbol					
IDX	F*009	D_1	D_2	D_3	(IDX) D020
		d_1	d_2	d_3	
Function	Offsets th			the	
	table hea				
	register b				N
	the Ag.3				When register D020 = 0204H, the data are
	the result				extracted and distributed as shown below.
	the Ag.1				
	the data I of the Ag			byte	D020 02 04
Content of	(D ₂) + ((GI.		
operation		$d_3(L)$			
op or our or r	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4 3(□ //)			D000 Lower 8 bits D010 Lower 8 bits
	(D ₁) + ((ر (H)) کا			Higher 8 bits Higher 8 bits
	$\begin{pmatrix} D_1 \\ d_1 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$	d ₃ (H))			> D001 Lower 8 bits D011 Lower 8 bits
Range of	Direct reg		Entire ra	_	Higher 8 bits Higher 8 bits
argument 1	Indirect re				D012 Lower 8 bits
Range of	Direct reg		Entire ra		Higher 8 bits
argument 2	Indirect re		Entire i		
Range of	Direct rec	•	Entire ra	_	
argument 3	Indirect re	egister:	Entire i	range	
After operation	0				
• Ag.1 content	Operation				
• Ag.2 content	Unchang				
• Ag.3 content	Unchang Unchang				
• Flag	Unchang	c u			

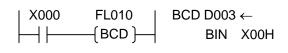
Transferred data is the two (2) bytes.


When register D_2 is the byte register, the high-order byte of D_1 becomes zero (0). When register D_1 is the byte register, the low-order byte of the data read is written.

 $\boxed{F^*010}$ BIN \rightarrow BCD Conversion (Unsigned)

		l l	Argumer	nt	
	Code	Ag.1	Ag.2	Ag.3	X000
Symbol					BCD BIN V000
BCD	F*010	D_1	D_2		
		d ₁	d_2		
Function	Converts				When input X000 is ON, the data of register V000
	of registe				(timer T000 set value) is converted into the BCD
	the BCD				data and stored in register Y03W (Y03F ~ Y030).
	register s	pecified	by Ag.1		V000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Content of	D_2		(D_1)		V000 0 0 0 0 0 1 0 0 0 0 0 0 0
operation	$BIN\begin{bmatrix} D_2 \\ d_2 \end{bmatrix}$	→ RCD	d_1		MSB LSB
Range of	Direct reg	nictor:	Entiro ra	ngo	. ↓
argument 1	Indirect re	•		_	
Range of	Direct reg				Y03W 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0
argument 2	Indirect re	•	Entire	_	
After operation					When the binary data of register D ₂ is larger than
 Ag.1 content 	Operation	n result			9999, a code other than BCD is stored in the
 Ag.2 content 	Unchang	ed			highest-order position of the BCD, and normal
 Flag 	Overflow	is ON w	hen the	D_2	conversion is not performed.
	binary da	ta is larç	ger than	9999.	

• When registers D₁ and D₂ are the byte registers,

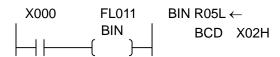


One (1)-byte binary data of X00L is converted into the BCD code and stored in Y01L.

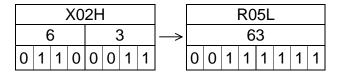
Note: If the X00L value exceeds 99, the third (3rd) digit and above are ignored.

			X0	0L								Υ0	1L			
			7	8				\rightarrow		7	7			8	3	
0	1	0	0	1	1	1	0		0	1	1	1	1	0	0	0

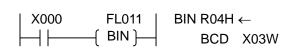
When register D₁ is the word register and register D₂ is the byte register,


One (1)-byte binary data of X00H is converted into the BCD data and stored in D003.

X00H	X00H							D 0	03	3						
209			()		2	2			()			ξ	9	
1 1 0 1 0 0	0 1		0 0	0 (0	0	1	0	0	0	0	0	1	0	0	1


F*011 BCD → BIN Conversion (Unsigned)

					ı					
			\rgumer							
	Code	Ag.1	Ag.2	Ag.3	X00	20	FL01	1	BIN D050	1
Symbol						1				
BIN	F*011	D_1	D_2	_			—(BIN	}—	BCD	X02W
		d_1	d_2							
Function	Converts	the uns	igned B0	CD	When i	nput X	000 is O	N, the B	CD data	of register
	data of re	gister sp	pecified	by Ag.2	X02W i	s conv	erted int	o the BI	N data aı	nd stored in
	into the B	IN data	and stor	es in	D050.					
	the regist	er speci	fied by A	\g.1.			0	2	5	6
Content of	(D)	(D.)		X02W	0 0	0 0 0	1 0 0	101	0 4 4 0
operation	$BCD\begin{bmatrix} D_2 \\ d_2 \end{bmatrix}$	\rightarrow BIN	1 d		702VV		0 0 0	0 1 0 0	0 1 0 1	
	(u ₂	J	(u ₁)			MSB		\downarrow		LSB
Range of	Direct reg	gister:	Entire ra	nge						
argument 1	Indirect re	egister:	Entire i	range	5050					
Range of	Direct reg	gister:	Entire ra	nge	D050	0 0 0	0 0 0	0 1 0	0 0 0	0 0 0
argument 2	Indirect re	egister:	Entire i	range	(256)					
After operation										
 Ag.1 content 	Operation	n result								
 Ag.2 content 	Unchang	ed								
• Flag	Unchang	ed								


• When registers D₁ and D₂ are the byte registers,

One (1)-byte BCD data of X02H is converted into the BIN data and stored in R05L.

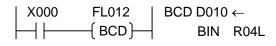
• When register D₁ is the word register and register D₂ is the byte register,

Two (2)-byte BCD data of X03W is converted into the BIN data and the low-order one (1) byte is stored in R04H.

	X03W															R0	4F	ł						
	(0			2	2			ļ	5			4	4		\rightarrow				25	54			
0	0	0	0	0	0	1	0	0	1	0	1	0	1	0	0		1	1	1	1	1	1	1	0

Note: If the X03W value exceeds 256, the low-order eight (8) bits that were converted into the BIN data are stored in R04H.

F*012 BIN → BCD Conversion (Signed)

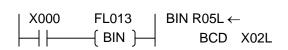

		<i>F</i>	Argumer	nt	
Symbol	Code	Ag.1	Ag.2	Ag.3	X000
BCD	F*012	D₁ d₁	D_2 d_2	_	
Function	Converts register s the BCD register s	pecified data and	ed BIN by Ag.2 d stores	into in the	When input X000 is ON, the signed BIN data of register D070 is converted into the signed BCD data, and the low-order four (4)-digit data is stored in register D055 and the high-order one (1) digit and a sign are stored in register D056.
Content of operation	$BIN \begin{bmatrix} D_2 \\ d_2 \end{bmatrix}$) → BCI	$O\left(\begin{matrix} D_1, D \\ d_1, d_1 \end{matrix}\right)$	1 + 1 + 1	(Low-order 4 digits) D070 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 (-25089)
Range of argument 1	Direct reg	-		_	D055 0 1 0 1 0 0 0 1 0 0 1 0 0 1
Range of argument 2	Direct reg	-	Entire ra Entire		(High-order 1 digit) - 0 0 2 D056 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0
After operation	Operation Unchang Unchang	ed			When the high-order four (4)-bit data of register D1+1 is 1101, it signifies the negative value. If 0000, it represents the positive value.

• When registers D₁ and D₂ are the byte registers,

The register D_1 data is four (4) bytes if it is the byte register or word register.

R03L		Y0	6H	YC	6L	Y0	5H	YO	5L
195	\rightarrow	0	0	0	0	0	1	9	5
1 1 0 0 0 0 1 1		0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 1	1 0 0 1	0 1 0 1

• When register D_1 is the word register and register D_2 is the byte register,



R04H			DO)11		D010							
195	\rightarrow	0	0	0	0	0	1	9	5				
1 1 0 0 0 0 1 1		0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 1	1 0 0 1	0 1 0 1				

 $\boxed{F^*013} \quad \mathsf{BCD} \to \mathsf{BIN} \; \mathsf{Conversion} \; (\mathsf{Signed})$

		, A	Argumen	nt	
Symbol	Code	Ag.1	Ag.2	Ag.3	X000
BIN	F*013	D ₁	D ₂		
		d_1	d_2		
Function	Converts	_			When input X000 is ON, the signed BCD data of
	of registe				registers D200 and D201 is converted into the
	the BIN o				signed BIN data and stored in register D010.
Content of			, ,		8 4 3 2
operation	$BCD\begin{bmatrix} D_2, \\ d_2, \end{bmatrix}$	$D_2 + 1$	\rightarrow BIN	$\begin{bmatrix} D_1 \end{bmatrix}$	D200 1 0 0 0 1 0 0 0 1 1
'	(a ₂ ,	$a_2 + 1$		(a₁)	0 0 1
Range of	Direct reg				D204 ()
argument 1	Indirect re				D201 1 0 1 0 0 0 0 0 0 0 0 0 0 1
Range of	Direct reg				MSB ↓ LSB
argument 2	Indirect re	egister:	Entire	range	D010 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0
					(–18432)
					(10402)
					MSB: 1 when negative and 0 when positive.
After operation					If the BCD data of registers D ₂ , D ₂ +1 is larger than
Ag.1 content	Operation				+32767 or smaller than -32768, the data is not
Ag.2 content	Unchang				converted into the BIN code legally.
 Flag 	Unchang	ea			

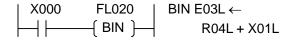
• When registers D₁ and D₂ are the byte registers,

The signed BCD data of X02L, X02H, X03L and X03H are converted into the signed BIN data and stored in register R05L.

X0:	3H	XO	3L	X0	2H	X0	2L		R05L
_	0	0	0	0	1	0	3 –	>	-103
1 1 0 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 1	0 0 0 0	0 0 1 1		1 0 0 1 1 0 0 1

• When register D₁ is the word register and register D₂ is the byte register,

X0	4H	X0	4L	X0	3H	X0	3L
0	0	0	0	0	7	0	9
0000	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 1 1 1	0 0 0 0	1 0 0 1


							\downarrow	′							
							00	0/	4						
	709														
0	0	0	0	0	0	1	0	1	1	0	0	0	1	0	1

Even if register D_2 is the byte register or word register, four (4)-byte data is converted.

F*020 BIN Addition

		-	Argumer	nt	
	Code	Ag.1	Ag.2	Ag.3	
Symbol					X000 FL020 BIN D000 ←
BIN	F*020	D_1	D_2	D_3	MOV D001 + D002
		d_1	d_2	d_3	
			K_2	K_3	
Function	Adds the				When input X000 is ON, the BIN data of register
	specified				D001 is added to the BIN data of register D002,
	of registe				which is then stored in register D000.
	stores the			'	
Content of	specified				D001 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 1
Content of	$BIN \begin{bmatrix} D_2 \\ d_2 \\ K_2 \end{bmatrix}$	[[\mathcal{D}_3	(D₁)	(5641)
operation	BIN d ₂	+ BIIN C	$ ^3 \rightarrow R$	^{IIN} d₁	+
	$\left[\begin{array}{c} \left(K_{2} \right) \end{array} \right]$	۱	(₃)	(,)	D000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Range of	Direct reg				D002 0 0 0 0 1 0 0 1 0 0 0 1 1 0
argument 1	Indirect reg				(1158)
Range of	Direct reg				MSB LSB
argument 2	Indirect re				D000 0 0 0 1 1 0 1 0 1 0 0 0 1 1 1 1 1
a. gaa.	Constant				(6799)
Range of	Direct reg	gister:	Entire ra	nge	(0799)
argument 3	Indirect re				A000 0
	Constant	: -327	68 ~ 327	7 67	7,000
After operation					
 Ag.1 content 	Operation				If the word register is used for either register D ₂ or
 Ag.2 content 	Unchang				D_3 and the byte register is used for register D_1 , the
 Ag.3 content 	Unchang				sum of low-order eight (8) bits is stored in D ₁ and
 Carry flag 	A000: T				the high-order eight (8) bits are ignored.
		takes p	ace as a	a result	
7 ()		eration.	. N. I	d	
 Zero flag 	A006: T				
• Sign flog	A007: T	ation res			
Sign flag		is 1 as a			
	opera		a result (וכ	
	upera	מנוטוו.			

• When registers D₁ and D₂ are the byte registers,

The BIN data of R04L and X01L are added and the low-order one (1) byte is stored in E03L.

If a carry takes place (i.e., the data exceeds 256), the carry flag will not turn ON.

		R	0	4L	•						2	X0	1L								E 0	3L			
		1	9	8				+				2	11				\rightarrow				15	53			
1 1	() ()	0	1	1	0		1	1	0	1	0	0	1	1		1	0	0	1	1	0	0	1

If the registers D_2 and D_3 are the byte registers, they are operated as the word register whose high-order eight (8) bits are zero (0).

F*021 Carried BIN Addition

		, A	Argumer	nt	
	Code	Ag.1	Ag.2	Ag.3	
Symbol				_	X000 FL021 BIN D110 ←
BIN	F*021	D_1	D_2	D_3	
		d ₁	d_2	d_3	
			K_2	K_3	
Function	Adds the	BIN data	a of regi	ster	When input X000 is ON, the BIN data of register
	specified				D00F, BIN data of register D120 and carry flag
	register s				(A000) are added, which is then stored in register
	carry flag				D110.
	register s				
Content of	$\begin{bmatrix} D_2 \\ d_2 \\ K_2 \end{bmatrix} + \begin{bmatrix} I \\ I \end{bmatrix}$	D_3		(D₁)	D00F[0 0 1 0 1 1 0 0 0 0 1 0 0 1 0 (11282)
operation	$ d_2 + c$	d ₃ + C	\rightarrow BIN	d₁ l	
	$ [K_2] $	K_3			+
D					D1200001001100110000100
Range of	Direct reg	-		_	(4932)
argument 1	Indirect re				+
Range of argument 2	Direct reg				A000 [1]
argument 2	Constant				(Carry flag)
Range of	Direct reg				
argument 3	Indirect re	-		_	MSB LSB
argumento	Constant				D110 0 0 1 1 1 1 1 1 0 1 0 1 0 1 1 1
After operation		. 0	<u> </u>		(16215)
 Ag.1 content 	Operation	n result			(1.5=1.5)
 Ag.2 content 	Unchang				A000 0
 Ag.3 content 	Unchang	ed			If the word register is used for either register $\overline{D_2}$ or
 Carry flag 	A000: T	urned C	N when	а	D ₃ and the byte register is used for register D ₁ , the
		takes pl	lace as a	a result	sum of low-order eight (8) bits is stored in D ₁ and
		eration.			the high-order eight (8) bits are ignored.
 Zero flag 	A006: T		_		
		ation res			
 Sign flag 	A007: T				
		is 1 as a	a result o	ot .	
	opera	ation.			

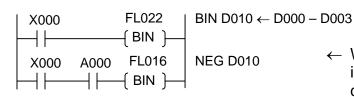
When adding the binary data of one (1) word or over,

- Addition of low-order one (1) word data.
- Addition of high-order one (1) word data.

In the above circuit, BIN data of $0 \sim 4294967295$ is stored in D100 (low-order word) and D101 (high-order word).

F*022 BIN Subtraction

		l l	Argumer	nt	
	Code	Ag.1	Ag.2	Ag.3	
Symbol	E*000				X000
BIN	F*022	D₁ d₁	D_2 d_2	D_3 d_3	├────────────────────────────────────
			K ₂	K_3	
Function	Figures of between specified of registe stores the specified	the BIN by Ag.2 r specifi e result i	data of r and BIN ed by Ag n registe	egister I data g.3 and	When input X000 is ON, the BIN data of register D020 is subtracted from the BIN data of register D112, which is then stored in register D030.
Content of					(25140)
operation	$BIN \begin{bmatrix} D_2 \\ d_2 \\ K_2 \end{bmatrix}$	– BIN d	$\begin{bmatrix} J_3 \\ J_3 \\ J_3 \end{bmatrix} \rightarrow B^{I}$	$IN \left(egin{matrix} D_1 \\ d_1 \end{smallmatrix} \right)$	D020001100000101010001 (12449)
Range of	Direct reg	•		_	\ \ \ \
argument 1	Indirect re				MSB LSB
Range of argument 2	Direct reconstant	egister:	Entire i	range	D030 0 0 1 1 0 0 0 1 1 0 0 1 0 1 1 (12691)
Range of argument 3	Direct reg Indirect re Constant	egister:	Entire i	range	A000 0
After operation	resul	ed ed urned C w takes t of oper	place as	s a	If the word register is used for either register D_2 or D_3 and the byte register is used for register D_1 , the low-order eight (8) bits of the result are stored in D_1 and the high-order eight (8) bits are ignored.
Sign flag	A007: T	urned C is 1 as a	ult is zer N when a result o	the	


• When registers D₁, D₂ and D₃ are the byte registers,

The BIN data of X04L is subtracted from the BIN data of R03H, and the difference is stored in R20L.

If a borrow takes place as a result of operation, the carry flag turns ON.

			R 0	3F	1							X0	4L	-							R2	OL			
			5	7				_				1(8(\rightarrow				-5	51			
0	0	1	1	1	0	0	1		0	1	1	0	1	1	0	0		1	1	0	0	1	1	0	1

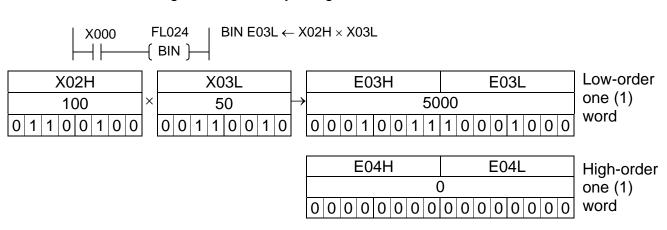
• When obtaining the absolute operation result,

When a borrow takes place, the value is changed to a positive one using the complement of 2 of the result.

F*023 Borrowed BIN Subtraction

		A	Argumer	nt	
Complete al	Code	Ag.1	Ag.2	Ag.3	X000
Symbol BIN	F*023	D ₁	D_2	D_3	BIN D051 - C - D044
Bii4	1 020	d_1	d_2	d_3	
		,	K_2	K ₃	
Function	Subtracts	-			When input X000 is ON, the BIN data of register
	register s				D044 and carry flag (A000) are subtracted from
	carry flag register s				the BIN data of register D051, and the difference is stored in register D003.
	stores the				
	specified			giotoi	D051 0 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0
Content of	(D ₂) (D^3		(D)	(22312)
operation	$\left \begin{array}{c c} -2 \\ d_2 \end{array} \right - \left \begin{array}{c c} -1 \end{array} \right $	d_3 -6	C → BIN		_
	$\left[\begin{array}{c} \bar{K_2} \end{array}\right]$	$\left[K_{3}\right]$		(u ₁)	D044 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0
Range of	Direct reg				(8994)
argument 1	Indirect reg				
Range of	Direct reg				A000 [1]
argument 2	Indirect re	egister:	Entire i	range	\
	Constant				MSB LSB D003 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 1
Range of	Direct reg				(13317)
argument 3	Indirect re Constant				(13317)
After operation	Constant	. 527	30 - 321	07	A000 0
Ag.1 content	Operation	n result			If the word register is used for either register D ₂ or
 Ag.2 content 	Unchang				D ₃ and the byte register is used for register D ₁ , the
Ag.3 content	Unchang				low-order eight (8) bits of the result are stored in
Carry flag	A000: T		_		D ₁ and the high-order eight (8) bits are ignored.
		w takes t of oper	place as	s a	Data of 0 ~ 65535 is also available.
 Zero flag 			alion. N when	the	
			ult is zer		
Sign flag	A007: T				
			a result o	of	
	opera	ation.			

When subtracting the binary data of one (1) word or over,


- ← Subtraction of low-order one (1)-word data.
- Subtraction of high-order one (1)-word data.

It should be noted that if a borrow takes place in the subtraction of high-order one (1)-word data, the data is illegal.

F*024 Unsigned BIN Multiplication

		A	Argumer	nt	
	Code	Ag.1	Ag.2	Ag.3	X000 FL024 BIN D105 ←
Symbol				_	BIN D04F * D01B
BIN	F*024	D_1	D_2	D_3	
		d ₁	d_2	d_3	
			K ₂	K ₃	
Function	Figures of				When input X000 is ON, the BIN data of register
	BIN data				D04F is multiplied by the BIN data of register
	Ag.2 and				D01B, and the low-order 1-word data is stored in
	specified	, ,			register D105 and the high-order 1-word data in
	result in r	egister s	specified	гру	register D106.
Content of	Ag.1.				D04F0001010000001010
operation	$\begin{bmatrix} D_2 \\ d_2 \end{bmatrix} * \begin{bmatrix} D_1 \\ d_2 \end{bmatrix}$) ³)	$D_1, \mid D_1, \mid$	D₁+1	(5130)
operation			^{™,} [d₁, d	1₁+1 J	
	$\left[\left[K_{2} \right] \left[K \right] \right]$	$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$			D01B00000000001011000
Range of	Direct reg	nister.	Entire ra	nge	(44)
argument 1	Indirect re				.l.
Range of	Direct reg		Entire ra		MSB LSB
argument 2	Indirect re				D106 0 0 0 0 0 0 0 0 0 0 0 0 1 1
	Constant	•			High-order one word
Range of	Direct reg	gister:	Entire ra	nge	D105 0 1 1 1 0 0 0 1 1 0 1 1 1 0 0 0
argument 3	Indirect re				(225720) Low-order one word
	Constant	: 0 ~ 6	5535	Ū	(====)
After operation					Mixed use of byte register and word register is
 Ag.1 content 	Operation	n result			possible. However, even if either register (byte
 Ag.2 content 	Unchang				register or word register) is specified for register
 Ag.3 content 	Unchang				D_1 , four (4)-byte data is stored in register D_1 .
 Flag 	Unchang	ed			Data of 0 ~ 65535 are available.

• When all registers are the byte registers,

F*025 Unsigned BIN Division

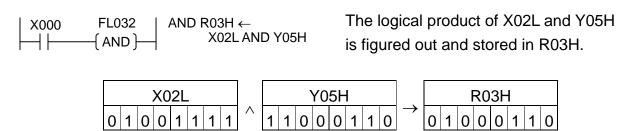
		P	Argumer	nt			
	Code	Ag.1	Ag.2	Ag.3	Lyon	FL025	I BIN D005 ←
Symbol	F*005	1		_	X000		D101 / D05F
BIN	F*025	D_1	D_2	D_3		—(BIN)—	1 21017 2001
		d₁	$d_2 \ K_2$	d_3 K_3			
Function	Divides the specified data of re	by Ag.2	by the E	3ĬN	of register D1	01 and regist	e four (4)-byte BIN data er D102 is divided by of register D05F, and the
	and store						e stored in registers
	remainde				D005 and D0		
	by Ag.1.				-		
Content of	(D ₂ , D ₂ +	1) /(D	3) [[) ₁	D102 0 0	0 0 0 0 0	
operation	$ \begin{pmatrix} D_2, D_2 + \\ d_2, d_2 + 1 \\ K_2 \end{pmatrix} $		$\rfloor \rightarrow \lfloor d$	l ₁]	D404 0 0	04040	High-order one word
	$\left(K_{2}\right)$]/ [ĸ	₃ ∫ (qı	uotient)	D101 0 0 (6362145		0 0 0 1 0 0 0 0 1 Low-order one word
		(D.4	.1)		(0302143	·) -	Low order one word
		d_1+	$\binom{1}{1}$ (rema	ainder)	D05F 0 1	0 1 0 1 1	0 0 0 0 0 0 0 1 0
Range of	Direct reg	gister: I	Entire ra	nge	(22018) MSB	V	LSB
argument 1	Indirect re					0 0 0 0 0	
Range of	Direct reg		Entire ra		(Quotient 2		
argument 2	Indirect re Constant	•		range		0 1 0 0 0	1 1 1 1 0 0 0 0 1
Range of	Direct reg			nge	(Remainde	er 20961)	
argument 3	Indirect re						
3	Constant			J			
After operation							
Ag.1 content	Operation						register or word
Ag.2 content	Unchang						gisters D ₁ and D ₂ , they
Ag.3 content Flag	Unchang				are operated	as the two (2) 5535 are avai	
• Flag	Unchang	eu			Dala 01 0 ~ 6	SSSS are avai	iabie.

- Values of dividends D₂, D₂+1 can exceed 16 bits, but quotient D₁ must be less than 16 bits.
- When all registers D₁, D₂, D₃ are the byte registers,

$$\begin{array}{c|cccc} X000 & FL025 & BIN Y05L \leftarrow \\ \hline & & X03L / R01H \end{array}$$

Two (2)-word BIN data of X04H, X04L, X03H and X03L is divided by the data of R01H, and the quotient is stored in Y015H and Y05L and the remainder in Y16H and Y16L.

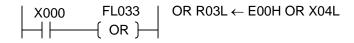
X04H	X04L	X03H	X03L		R01H
		67	35	÷	197
00000000	00000000	00011010	0 1 0 0 1 1 1 1		1 1 0 0 0 1 0 1


	Y05H									Y05L							
34																	
0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0		
						Qı	uo	tie	nt								

	Y06H									Y06L							
	37																
0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	1		
	Remainder																

F*032 Logical Product (AND)

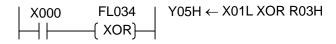
		A	Argumer	nt	
Symbol	Code	Ag.1	Ag.2	Ag.3	X000
AND	F*032	D_1	D_2	D_3	D001 AND D002
		d₁	$oldsymbol{d_2} oldsymbol{K_2}$	d₃ K ₃	
Function	Figures of (AND) of	BIN data	a of regi	sters	When input X000 is ON, the logical product of BIN data of registers D001 and D002 is figured out and
	specified stores the	e result i	n registe		the result is stored in register D000.
0 - 1 - 1 - 1	specified	by Ag.1	•		D001 0 0 1 0 1 1 0 1 1 1 0 1 1 1 0 0
Content of operation	$\begin{bmatrix} D_2 \\ d_2 \\ K_2 \end{bmatrix} \land \begin{bmatrix} \\ \end{bmatrix}$	$ \begin{bmatrix} D_3\\d_3\\K_3 \end{bmatrix} $ \rightarrow $ \begin{bmatrix} d_3\\d_3\\d_3 \end{bmatrix} $	$\begin{pmatrix} D_1 \\ d_1 \end{pmatrix}$		D0020000000001111111111 MSB
Range of	Direct reg				D000[0 0 0 0 0 0 0 1 1 0 1 1 0 0]
argument 1	Indirect re				
Range of	Direct reg				
argument 2	Indirect re Constant				
Range of	Direct reg	,	Entire ra	_	When either register D ₂ or D ₃ is the word register
argument 3	Indirect re Constant				and register D₁ is the byte register, the logical product of low-order eight (8) bits is figured out
After operation					and stored in register D ₁ . The high-order eight (8)
Ag.1 content	Operation				bits are ignored.
Ag.2 content	Unchang				
Ag.3 contentFlag	Unchang Unchang				Symbol ABC
· riag	Officiality	Gu			
					AND truth table A 100 0.10
					C 010 111


When registers D₁, D₂ and D₃ are the byte registers,

F*033 Logical Sum (OR)

			Argumer	nt	
	Code	Ag.1	Ag.2	Ag.3	
Symbol	F*000		_	-	X000
OR	F*033	D_1 d_1	D_2 d_2	D_3 d_3	OR — D110 OR D112
		α ₁	K ₂	D_3	
Function	Figures o				When input X000 is ON, the logical sum of BIN
	of BIN da				data of registers D110 and D112 is figured out and
	by Ag.2 a result in r				the result is stored in register D10F.
	Ag.1.	egister t	peomee	Юу	D110 0 0 1 1 0 0 0 1 0 0 0 1 1 1 0 0
Content of	D_2	D_3	(D4)		V
operation	$\begin{bmatrix} D_2 \\ d_2 \\ K_2 \end{bmatrix} \vee \begin{bmatrix} I \\ I \end{bmatrix}$	$d_3 \mid \rightarrow \mid$	d_1		D112 1 0 0 1 0 0 1 1 0 1 1 0 1 0 1
	$[K_2]$	K_3			\
Range of	Direct reg				MSB LSB
argument 1	Indirect red				D10F 1 0 1 1 0 0 1 1 0 1 1 1 1 0 1
Range of argument 2	Indirect reg				
argamont 2	Constant				
Range of	Direct reg				
argument 3	Indirect re Constant				
After operation	Constant	. 027	00 021	01	When either register D ₂ or D ₃ is the word register
 Ag.1 content 	Operation				and register D ₁ is the byte register, the logical sum
Ag.2 content	Unchang				of low-order eight (8) bits is figured out and stored
Ag.3 contentFlag	Unchang Unchang				in register D ₁ . The high-order eight (8) bits are ignored.
9					
					Symbol ABC
					OR truth table
					$ A\rangle$
					$ _{B} \xrightarrow{C} _{1111111111$

• When registers D₁, D₂ and D₃ are the byte registers,



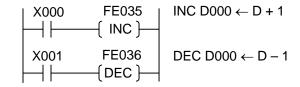
	E00H				X04L							R03L														
1	(О	0	1	0	0	1	0	V	0	0	0	1	0	1	0	1	\rightarrow	1	0	0	1	0	1	1	1

F*034 Exclusive Logical Sum (XOR)

		A	Argumen	nt			
	Code	Ag.1	Ag.2	Ag.3		EL 00.4	
Symbol	E*00.4	1	1	_	X000	FL034	
XOR	F*034	D_1	D_2	D_3		-{ XOR}	D103 XOR D102
		d₁	$d_2 \ K_2$	d₃ K₃			
Function	Figures of sum (XOI registers Ag.3 and registers	R) of BIN specified stores to pecified	xclusive N data of d by Ag.: he result by Ag.1	logical f 2 and t in	of BIN data of out and the res	registers sult is st	N, the exclusive logical sum s D103 and D102 is figured ored in register D10D.
Content of operation	$\begin{bmatrix} D_2 \\ d_2 \\ K_2 \end{bmatrix} \oplus$	$\begin{pmatrix} D_3 \\ d_3 \\ K_3 \end{pmatrix} \!\! o \!\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	$\begin{pmatrix} D_1 \\ d_1 \end{pmatrix}$		D102 0 1		⊕ 1 1 0 1 0 1 1 0 1 1 0 ↓
Range of	Direct reg	gister:	Entire ra	nge	D10D 0 1	0 1 0	LSB 1 0 0 1 0 0 1 1 0 1 0
argument 1	Indirect re				ווטןטטוט	0 1 0	1 0 0 1 0 0 1 1 0 1 0
Range of	Direct reg	,	Entire ra	-			
argument 2	Indirect re Constant						
Range of argument 3	Direct reconstant	egister:	Entire i	range			
After operation	Operation Unchang Unchang Unchang	ed ed			XOR truth t		Symbol A B C 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

• When registers D₁, D₂ and D₃ are the byte registers,

X01L		R03H	1	Y05H
1 0 1 1 0 1 1 1	⊕	10011001	\rightarrow	0 0 1 0 1 1 1 0


F*035 Increment

		,	Argumer	nt	
Symbol	Code	Ag.1	Ag.2	Ag.3	X000 FE035 INC D015 ← D + 1
INC	F*035	D ₁			(INC)—
		d_1			
Function	Incremen	ts the B	IN data d	of	When input X000 has turned ON from OFF, the
	register s				BIN data of register D015 is incremented and
	stores in	register	specified	d Ag.1.	stored in register D015.
Content of operation	$\begin{bmatrix} D_1 \\ d_1 \end{bmatrix} + C$	$I \to \begin{bmatrix} D_1 \\ d_1 \end{bmatrix}$	1		D015 0 0 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 (2329)
Range of	Direct reg				↓ MSB LSB
argument 1	Indirect re	egister:	Entire i	range	
After operation					
 Ag.1 content 	Low-orde	,) digits c	of	(2330)
	operation				
 Flag 	Unchang	ed			The data ranges from –32768 to 32767.

F*036 Decrement

		A	Argumen	nt	
Symbol	Code	Ag.1	Ag.2	Ag.3	X000 FE036 DEC D070 ← D − 1
DEC	F*036	D₁ d₁			(DEC)
Function	Decreme register s stores in	nts the E	by Ag.1	and	When input X000 has turned ON from OFF, the BIN data of register D070 is decremented and stored in register D070.
Content of operation	$\begin{bmatrix} D_1 \\ d_1 \end{bmatrix} - C$	$I \rightarrow \begin{bmatrix} D \\ d_1 \end{bmatrix}$	·)		D070 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 (3140)
Range of	Direct reg				↓
argument 1	Indirect re	egister:	Entire i	range	MSB LSB
After operation					D070 0 0 0 0 1 1 0 0 0 1 0 0 0 1 1
 Ag.1 content 	Low-orde) digits o	of	(3139)
	operation				
 Flag 	Unchang	ed			The data ranges from –32768 to 32767.

• Forward/backward counter as per increment or decrement (signed BIN data)

When X000 is ON, the counter value increments. Likewise, when X001 is ON, the counter value decrements. The data ranges from –32768 to 32767.

F*037 Unsigned Comparison

			A raumon	+							
Symbol	Code		Argumen								
,		Ag.1	Ag.2	Ag.3	- I >	(000	FL037	CP D100 ⇔			
CMP	F*037	D_1	D_2	B_3		1 —	-{CMP}-	\square D005 \rightarrow R050			
		d₁	d ₂			1.1	(CIVII)	1			
		K ₁	K ₂					. 500			
Function	Compares							the BIN data of register			
	register sp							he BIN data of register			
	the BIN da						result is o	output into relay R050,			
	by Ag.2, th	nen sto	res the re	esult in	R05	51.					
0 1 1	relay B3.				- [2100 0 0	0 0 1 0	0 1 0 0 1 0 0 0 1 1			
Content of	$\begin{bmatrix} D_1 \\ d_1 \\ K_1 \end{bmatrix} \leftrightarrow \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	D_2	_			(2339)	- - - -				
operation	$\mid d_1 \mid \leftrightarrow \mid$	d ₂	\rightarrow B ₃		\	MSB		LSB			
	K₁	$ K_2 $			[1 0 0 1	1 0 0 0 0 1 1 0 0 0			
D (` '	` '				(9752)	. 0 0 .				
Range of	Direct regi				\	(3.32)		1			
argument 1	Indirect re	_		ange			R050∙ON	, R051:OFF			
D (Constant:				_	-					
Range of	Direct regi			_	When the BCD data are compared, both are						
argument 2	Indirect reg			ange							
D (Constant:					arded as th					
Range of	Relay: E	ntire ra	ınge					is the byte register, the			
argument 3						•	•	is taken as the 16-bit data			
After operation						_	der eight ((8) bits are zero (0) and			
Ag.1 content	Unchange				con	npared.					
Ag.2 content	Unchange	a									
 Ag.3 content 			dan e			T		ī			
		elay ad				A 4	A 4				
	When	•	When B		j.1 =	Ag.1 <	Ag.1>				
	is eve		is odd		g.2	Ag.2	Ag.2				
	numb		number		4	4	0	1			
	B ₃		B ₃ -1		1	1	0	1			
	B ₃ +′		B ₃		1	0	0				
• Flag	Unchange	a									

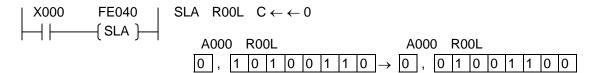
Comparison of byte register with word register (BIN data)

D000	R02H	Result	R104	R105
(72)	(202)	<	1	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1100 1010			
(202)	(202)	=	1	1
0000 0000 1100 1010	1100 1010			
(2304)	(174)	>	0	0
0000 1001 0000 0000	1010 1110			

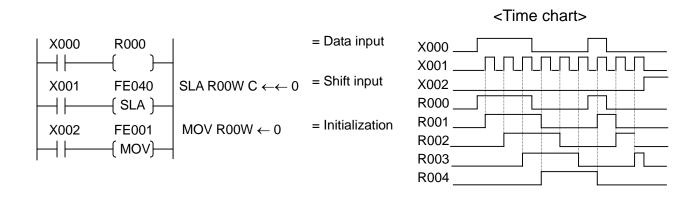
F*038 Signed Comparison

			Argumen	ıt							
	Code	Ag.1	Ag.2	Ag.3							
Symbol		J				X000	FL038				
CMP	F*038	D_1	D_2	B_3		→ 	-{ CMP}-	S D005 → R047			
		d₁	d_2		'		()	ı			
		K ₁	K ₂								
Function	Compare							the BIN data of register			
	register s the BIN d							the BIN data of register butput into relay R046,			
	by Ag.2, t				R04		i lesuit is c	output into relay K040,			
	into relay		ipato trio	rosuit							
Content of)				0 0 1 1	0 0 0 1 0 0 0 1 0 0			
operation	$\begin{bmatrix} \mathbf{K}_1 \\ \mathbf{d}_1 \end{bmatrix}$	$\leftrightarrow \begin{vmatrix} 1 \\ d_2 \end{vmatrix}$	$\rightarrow B_3$		(3140) MSB		LCD			
	$\begin{bmatrix} u_1 \\ D_4 \end{bmatrix}_c$	D_2	$\left\{\begin{array}{c} \\ \\ \\ \\ \end{array}\right\} \rightarrow B_3$			D005 0 0	0 1 1 0	LSB 0 0 0 1 1 0 0 0 1			
						6241)	0 1 1 0				
Range of	Direct reg				,	02-11)		J			
argument 1	Indirect re Constant						D040 011				
Range of	Direct reg					R046:ON, R047:OFF					
argument 2	Indirect re				Who	en the BCI	O data are	compared, they are			
	Constant	-		-	rega	arded as th	ne BIN dat	a.			
Range of	Relay: Er	ntire ran	ge					₂ is the byte register, the			
argument 3								is taken as the 16-bit data			
After operation	Llashaaa	ام ما				_	der eight ((8) bits are zero (0) and			
Ag.1 contentAg.2 content	Unchange Unchange				COII	npared.					
 Ag.2 content Ag.3 content 	Officiality	eu			l						
7 tg.o comon	R	elay ad	ldress]			
	Wher		When B	3 Aç	j.1 =	Ag.1 <	Ag.1>				
	is ev	/en	is odd		g.2	Ag.2	Ag.2				
	num		number	'							
	B;	-	B ₃ -1		1	1	0	1			
	B ₃ +		B ₃		1	0	0				
 Flag 	Unchange	ed									

• Comparison of byte register with word register (BIN data)

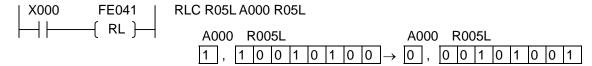

$$\begin{array}{|c|c|c|c|}\hline X000 & FL038 & CP D018 \Leftrightarrow S R03H \to R010\\\hline & & CMP \end{array}$$

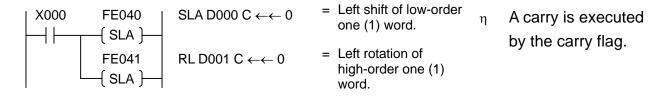
D180	R03H	Result	R010	R011
(-73) 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1	(153) 1 0 0 1 1 0 0 1	<	1	0
(-174) 1 1 1 1 1 1 1 1 0 1 0 1 0 0 1 0	(184) 1 0 1 1 1 0 0 0	<	1	0
(-3140) 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0	(83) 0 1 0 1 0 0 1 1	<	1	0
(206) 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0	(206) 1 1 0 0 1 1 1 0	=	1	1
(456) 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0	(226) 1 1 1 0 0 0 1 0	>	0	0


F*040 Arithmetic Left Shift

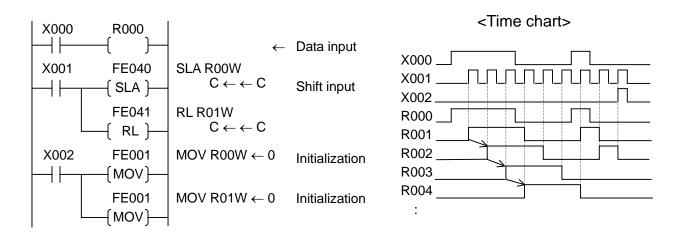
		A	Argumer	nt	
Symbol	Code	Ag.1	Ag.2	Ag.3	X000 FE040 SLA D070
SLA	F*040	D_1 d_1			
Function	Shifts the specified to the left significan flag.	by Ag.1 and set	by one s the mo	(1) bit ost	When input X000 has turned ON from OFF, the data of register D070 is shifted by one (1) bit to the left, the MSB is set in A000 and LSB is set to zero (0).
Content of operation	$C \leftarrow \begin{bmatrix} D_1 \\ d_1 \end{bmatrix}$)←0			A000 D070 $\bigcirc \leftarrow \boxed{10110001110010001} \leftarrow \boxed{0}$
Range of argument 1	Direct reg	•		_	MSB ↓ LSB
After operation					A000 D070
Ag.1 content	Data shift left.	ed by or	ne (1) bi	t to the	1 011000111000010
Carry flag		status of e shifted		Ag.1	When register D₁ is the byte register, the high-order eight (8) bits are brought into zero (0)
Other flags	A006, A0	07: Un	change	d	and shifted. As a result, the carry flag is turned OFF.

• When register D₁ is the byte register,

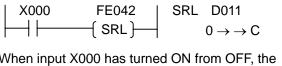

• Example of using register as one (1)-word length shift register:


F*041 Left rotation

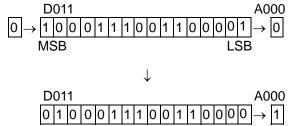
		, i	Argumer	nt	
0 1 1	Code	Ag.1	Ag.2	Ag.3	X000 FE041 RL D007
Symbol	E+0.44	_			$RL \longrightarrow C \leftarrow C$
RL	F*041	D_1			
		d₁			
Function	Shifts the		_		When input X000 has turned ON from OFF, the
	specified				data of register D007 is shifted by one (1) bit to the
	to the left				left, the A000 data is set in the LSB, then the MSB
	in the lea				in A000.
	then the l	MSB in t	he carry	flag.	A000 D007
Content of	(D ₄)			$1 \rightarrow 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1 \$
operation	$C \leftarrow \begin{bmatrix} D_1 \\ d_1 \end{bmatrix}$	J ← C			
Range of	Direct reg	gister:	Entire ra	nge	MSB LSB
argument 1	Indirect re	•		_	\downarrow
After operation					
 Ag.1 content 	Data shift	ted by o	ne (1) bi	t to the	A000 D007
	left. LSI	3 is the	value of	carry	0 010010001111110011
	flag befor	e shifted	d.	-	
 Carry flag 	A000: S	Status of	MSB of	Ag.1	When register D₁ is the byte register, the
	befor	e shifted	d.	-	high-order eight (8) bits are brought into zero (0)
Other flags	A006, A0	07: Un	change	b	and shifted. After operation, the carry flag data turns OFF.


• When register D₁ is the byte register,

• When shifting one (1) word or more to the left,

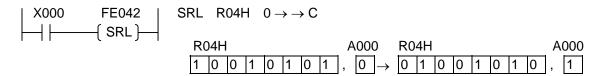


• Example of using register as two (2)-word shift register:

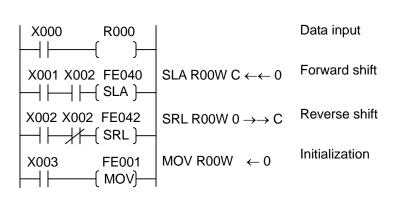


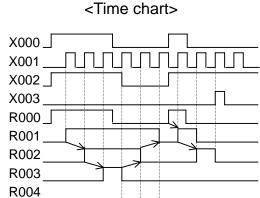
F*042 Right Shift

		ļ A	Argumen	ıt	
Symbol	Code	Ag.1	Ag.2	Ag.3	X00
SRL	F*042	D_1			l
		d_1			
Function	Shifts the	data of	register		When i
	specified	by Ag.1	by one	(1) bit	data of
	to the rigi	ht and se	ets the L	SB in	right, th
	the carry	flag.			zero (0
Content of	(D)			
operation	$0 \rightarrow \begin{bmatrix} D_1 \\ d_1 \end{bmatrix}$	\rightarrow C			
	(a ₁	J			
Range of	Direct reg	gister:	Entire ra	nge	
argument 1	Indirect re	egister:	Entire r	ange	
After operation					
 Ag.1 content 	Data shift	ted by oi	ne (1) bit	to the	
	right.				
 Carry flag 	A000: S	Status of	LSB of A	∆ g.1	
	befor	e shifted	d.		When
 Other flags 	A006, A0	07: Un	changed	t	high-or
					and sh



When input X000 has turned ON from OFF, the data of register D011 is shifted by one (1) bit to the right, the LSB is set in A000 and MSB is set to zero (0).

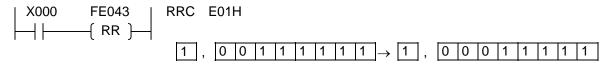



When register D_1 is the byte register, the high-order eight (8) bits are brought into zero (0) and shifted to the right.

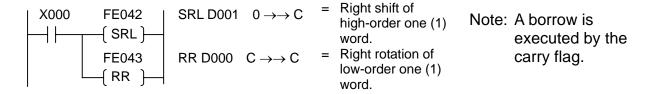
• When register D₁ is the byte register,

• Example of using register as bi-directional one (1)-word length shift register:

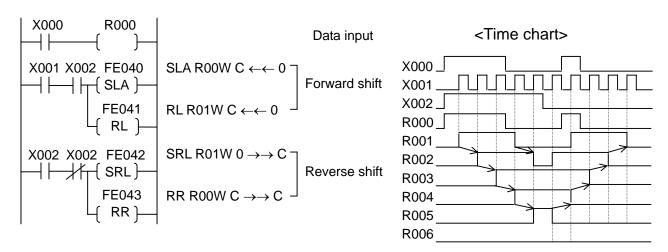
X000: Data signal X001: Shift signal


X002: Forward/reverse signal

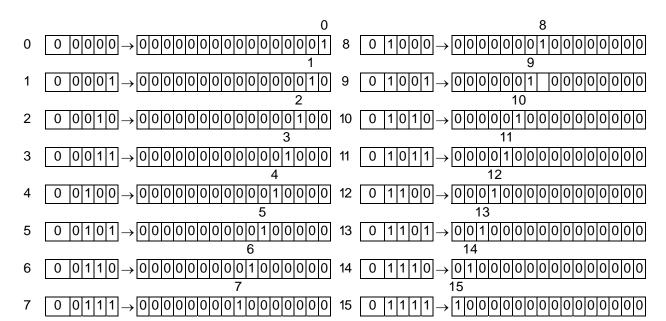
X003: Reset signal


F*043 Right Rotation

		F	Argumen	it				
	Code	Ag.1	Ag.2	Ag.3	X000	FE043	RR	D010
Symbol] 11	RR }		$C \rightarrow \rightarrow C$
RR	F*043	D_1						$C \rightarrow \rightarrow C$
		d ₁						
Function	Shifts the	data of	register		When input X	000 has turne	d ON f	rom OFF, the
	specified	by Ag.1	by one	(1) bit	data of registe	er D010 is shif	ted by	one (1) bit to the
	to the rigi	ht and se	ets the c	arry	right, the A00	0 data is set in	the M	SB, then the
	flag data	in the M	SB, ther	sets	LSB in A000.			
	the LSB i	n the ca	rry flag.		A000 D0	10		
Content of	(D.)	, ,		$1 \rightarrow 0.1$	1 0 0 1 1 1	0 0	1 0 1 0 1 0
operation	$C \rightarrow \begin{bmatrix} D_1 \\ d_1 \end{bmatrix}$	\rightarrow C				1 0 0 1 1 1		1 0 1 1 0 1 1 0 1
	(u₁	J			MCD			
Range of	Direct reg	gister: I	Entire ra	nge	MSB			LSB
argument 1	Indirect re	egister:	Entire r	ange		J		
After operation					A000 D0	10		
 Ag.1 content 	Data shift	ted by or	ne (1) bit	to the			4 0	
	right. M	SB is the	e value d	of carry	0 1 0	1 1 0 0 1 1	1 0	0 1 0 1 0 1
	flag befor	re shifted	d.	•	When register	r D₁ is the byte	e regist	er, the
 Carry flag 	A000: S			∆ g.1				nt into zero (0)
, ,		e shifted		•				flag data in MSB
 Zero flag 	A006: S	Status of	LSB of A	Ag.1	has no meani		,	J
		e shifted		J		J		
 Sign flag 	A007: L	Jnchang	ed					


When register D₁ is the byte register,

• When shifting one (1) word or more to the right,



• Example of using register as bi-directional two (2)-word length shift register:

F*045 4 → 16 Decoder

		A	Argumer	nt			
Symbol	Code	Ag.1	Ag.2	Ag.3	X000	FL045 DC	
DCD	F*045	D₁ d₁	D_2 d_2			—(DCD)—	D00F
Function	Decodes bits of reg into 16 bi specified	gister sp ts and s	ecified b tores in	y Àg.2	data of registe	000 is ON, the low- er D00F is decoded as the 16-bit data.	l and stored in
Content of operation	$\begin{pmatrix} D_2 \\ D_2 \end{pmatrix} \rightarrow$		_		D00F	Ignored	1 1 0 0
Range of argument 1	Direct reg	egister:	Entire	range	(12) MSB		LSB
Range of argument 2	Direct rec	•	Entire ra	_		,	
After operationAg.1 contentAg.2 contentFlag	Operation Unchang Unchang	ed				$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0 ster, the low-order
					register D₁.	egister D_2 is 8 or o	

F*047 Bit Test (Constant Designation)

		, i	Argumer	nt	
0	Code	Ag.1	Ag.2	Ag.3	X000 FL047 TEST D022 BIT
Symbol TST	F*047	D ₁	K ₂	B ₃	$\begin{array}{c c} \hline \end{array} \begin{array}{c} \hline \\ \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \end{array} $ \\ \\ \end{array} \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \end{array} \end{array} \\ \\ \end{array} \end{array} \end{array} \end{array} \\ \\ \end{array} \end{array} \end{array} \\ \\ \end{array} \end{array} \end{array} $ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \end{array} $
101	1 047	d_1	132	D ₃	
Function	Stores in the bit of				When input X000 is ON, the status of Bit 11 of the data in register D022 is stored in relay R015.
	specified				data iii registei D022 is stored iii relay N013.
	position s K2.	specified	by cons	stant	D022 0 0 1 0 1 0 0 0 1 1 1 0 0 0 0 0
Content of	(D_1)				15 11 87 0
operation	d_1	\rightarrow B ₃			
	$[d_1](K_2)$	<u>2</u>)			K ₂ = 11
Range of	Direct reg				R015 = ON
argument 1	Indirect re			range	11010 = 014
Range of	Constant	: 0 ~ 1	5		
argument 2					
Range of	Relay: I	Entire ra	nge		When register D₁ is the byte register, the
argument 3					When register D ₁ is the byte register, the
After operation					high-order eight (8) bits are brought into zero (0)
 Ag.1 content 	Unchang				and to stad
 Ag.2 content 	Unchang				and tested.
 Ag.3 content 	Status of	specifie	d bit		
 Flag 	Unchang	ed			

F*049 Subroutine Start

		/	Argumer	nt	
	Code	Ag.1	Ag.2	Ag.3	
Symbol					FL049 ₀₁
SBR	F*049	K ₁			SBR)—
Function	Defines t	he top o	f the sub	routine	
	program	specified	d by con	stant	
	Ag.1.				The top of the subroutine program is indicated.
Range of	Constant	: 0~3	2		A subroutine program can be written in any area of
argument 1					program.
After operation					
 Ag.1 content 	Unchang				
 Flag 	Unchang	ed			

Note: When programming a subroutine program, include the subroutine start instruction at the top and the subroutine return instruction at the end of a program.

Example:

When you have to repeat the same processing in the program, register it beforehand as a subroutine, and you can execute it by calling this subroutine, when necessary. Thus, you can reduce the number of program steps and make the program easy-to-see.

Data from the subroutine start instruction (F^*049) to the subroutine return instruction (F^*059) is registered as one (1) subroutine. Up to thirty-two (32) subroutines can be registered.

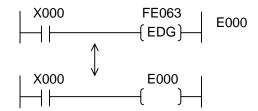
Set a subroutine number in the argument of subroutine start instruction. Likewise, set the subroutine number in the argument of subroutine return instruction. To call a registered subroutine, use the subroutine call instruction (F*058).

Cautions on use of subroutine:

Though there is not any limitation on the call of another subroutine from one subroutine (i.e., nesting), DO NOT execute the same subroutine. Otherwise, the system will operate incorrectly.

F*058 Subroutine Call

		A	Argumer	it	
Symbol	Code	Ag.1	Ag.2	Ag.3	When input X000 is ON, the subroutine program
CAL	F*058	K_1			010 is executed.
Function	Executes program specified	defined	by the co	onstant	X000 FL058 CAL 010
Content of operation	CAL K ₁				
Range of argument 1	Constant	: 0 ~ 3	2		Main program
					FL049 SBR 010 SBR) FL059 RET 010
After operation • Ag.1 content	Unchang	ed			RET }—


F*059 Subroutine Return/Program End

		l A	Argumen	nt	
Symbol	Code	Ag.1	Ag.2	Ag.3	The end of subroutine program 20 is executed.
RET	F*059	K ₁			
Function	Specifies subrouting by the co	e progra	ım desig	nated	FL049 020 (SBR)
Content of operation	RET				
Range of argument 1	Constant	: 0 ~ 3	2		FL059 020 (RET)
After operation • Ag.1 content	Unchang	ed			

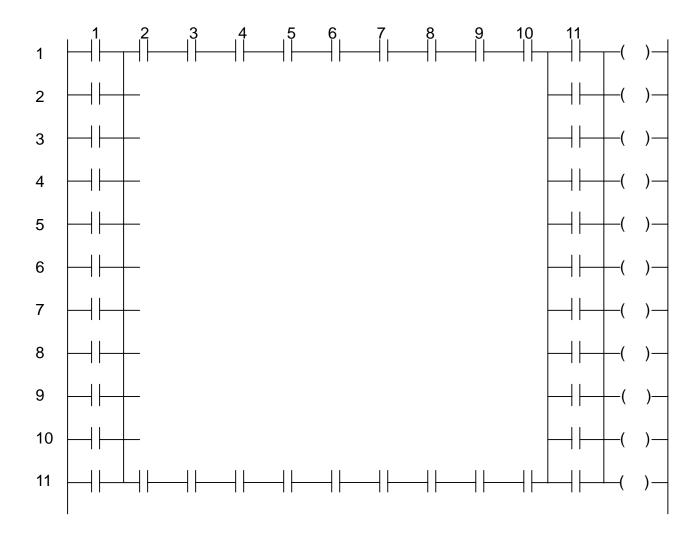
F*063 1-Scan ON

	Code		Argumer		ı X	000		FE063				
Symbol	Code	Ag.1	Ag.2	Ag.3		1		-{EDG}		EDGE	E000	
EDG	FE063	B ₁			'				•			
Function	Turns ON Ag.1 duri			•				00 has tu ON, whic				,
Content of operation	B ₁ : ON				instru	ction	is ex	ecuted in	the ne	ext sca	an.	
Range of argument 1	Relay: I	Entire ra	nge			I/O	User's	program p	rocessin			
After operation						proce	ssing			proce	ssing	
 Ag.1 content 	Turned O	N relay	B ₁ for or	ne (1)			7	FE063			FE	063
• Flag	scan. Unchang	ed			X00	00 ON	ı <i></i> /	←— ON		gram en		
					200	,,,		Oi	V			

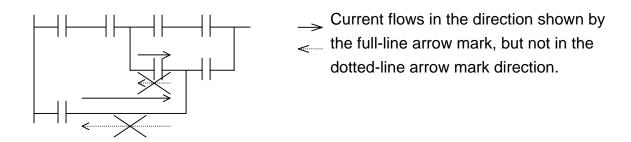
Note: This instruction works exactly in the same manner as differentiating relay E***.

In terms of the processing speed, differentiating relay E*** is faster than this instruction. It is recommended, therefore, to use differentiating relay E*** where possible.

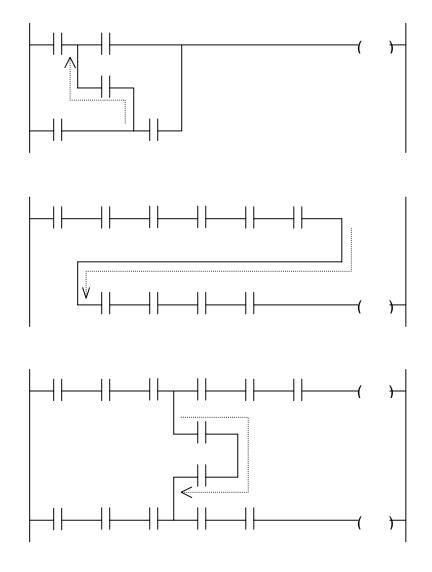
This instruction cannot be used as FL063.

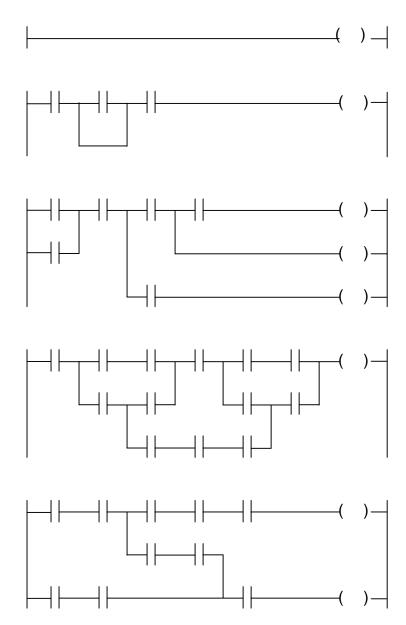

7.6 Programming

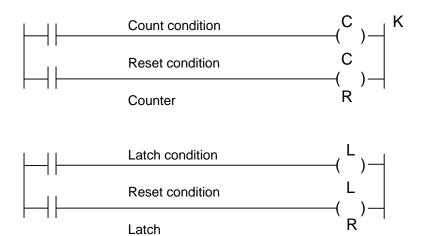
The PLC may perform the operation slightly different from the actual relay circuit because it successively reads data from the program memory and performs instructions one by one. Additionally, a run-around preventing diode is not required, which is needed for the relay board, and the number of auxiliary contacts is unlimited.

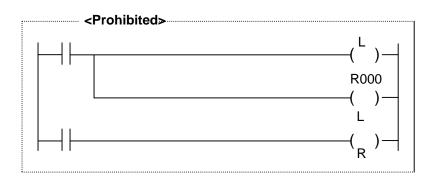

Design the circuit efficiently by fully understanding the difference in circuit design between the PLC and relay board.

7.6.1 Limitation on Creating Circuit


(1) One (1) circuit must consist of (11 columns \times 1 output) \times 11 lines or less as shown below.

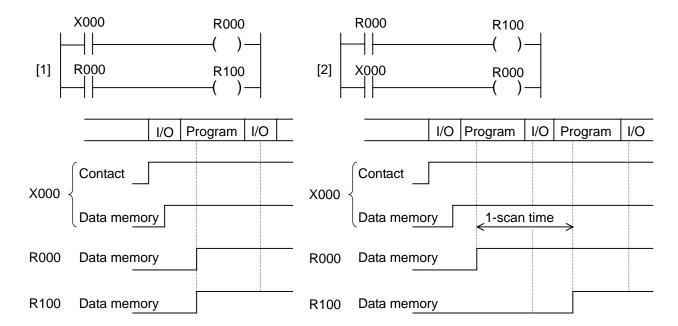

(2) Current in the same circuit only flows from left to right. It will not flow from right to left. That is, the circuit includes a one-way diode at each contact.


For the current below, the current in the dotted-line arrow mark direction is not existent.



(3) No limitation is imposed on the circuit if items (1) and (2) are considered.

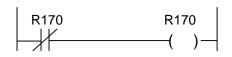
(4) The pair coil is considered as one (1) circuit.
The counter and latch are considered as one (1) circuit, including the reset condition. It is not possible to include another coil between the pair coil.


(Pair coil error occurs.)

7.6.2 Influence by Program Sequence

The PLC performs operation from the top to the end (P. END instruction) of the program repeatedly. (Cyclic scanning operation system)

For this reason,


- (a) The operation is performed from the top to bottom of the program for each circuit (i.e., each circuit block with AND and OR connections).
- (b) The operation is performed from the left to right for each column in one (1) circuit. (The operation of the input part is performed before the operation of the output part.)
- (1) When the program sequence is changed, the operation may differ.

In program [1] above, R000 and R100 are turned ON within the same scan when X000 is turned ON. In program [2], however, R100 is turned ON one (1) scan later. This is because the status of contact R000 is changed one (1) scan later due to the presence of contact R000 before coil R000.

Generally, the status of the contact programmed before the coil is changed at the next scan to the one in which the coil state changed. There is a programming technique to use such scan delay constructively.

Example:

This is an oscillation circuit which repeats ON and OFF every scan.

(2) If an interlock is made in one (1) circuit, malfunction may result in.

Even if an interlock is made mutually in the above circuit, SOL1 and SOL2 repeat ON and OFF every scan when PB1 and PB2 are pressed at the same time.

This is because the operation is performed from the left to right in the same circuit according to the principle in Item (b) of Para. 7.6.2. To prevent malfunction, the circuit must be divided into the two (2) parts.

When PB1 and PB2 are pressed at the same time, the circuit in which priority is given to SOL1 is formed.

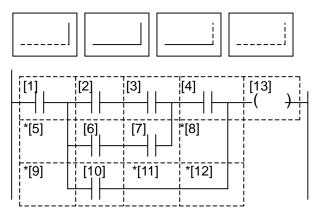
(3) If an application instruction with change in flag status is used together with a flag contact in the same circuit, the flag result is incorrectly reflected.

The above is the circuit to output an error as a result of operation (overflow) to R000. As the input part is operated before the output part according to the principle in Item (b) of Para. 7.6.2, the carry result after addition is not reflected. It is necessary to divide the circuit into the two (2) parts.

For the application instruction that performs operation with carry, however, multi-output circuits pose no problem because the flag is processed automatically and internally.

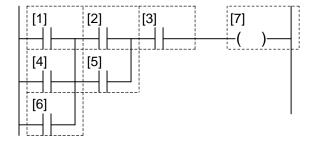
7.6.3 Influence by Input/Output Processing

The input/output relay can be used as a byte or word register. When it is used as a source or destination, however, all data are read and written in and out of the data memory. At the time when the application instruction has been executed, the result will not be output to the I/O device.

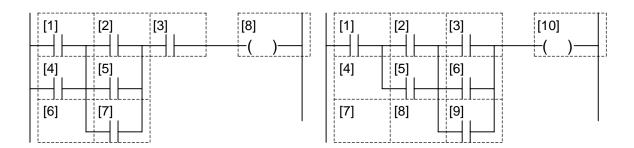

The final result of the operation is processed in batch and exchanged between the I/O device and data memory. At this time, the result is actually output to the I/O device.

7.6.4 Promoting Programming Efficiency

The TCmini need not consider stacks unlike the PLC with serial Boolean algebra processing system, because it has the special direct ladder-diagram input system. When the characteristics are fully understood, however, a program becomes more efficient with fewer instruction words.


(1) How to count the number of instruction words

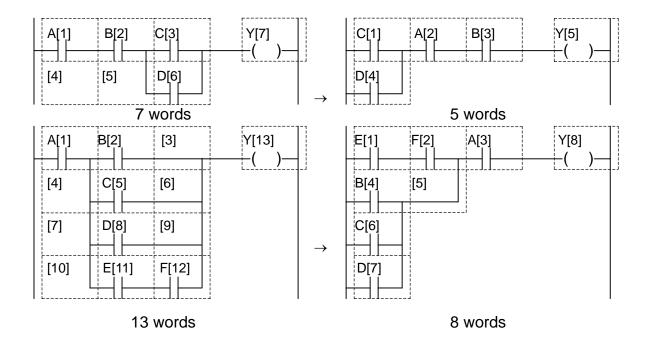
The following sections necessary for constructing a circuit are counted as one (1) word.



Each section enclosed by dotted line is counted as one (1) word. The line required for constructing a circuit as marked "*" is also counted as one (1) word. In the above example, there are 13 words.

(2) Generally, if the circuit is left-down, a program becomes efficient with fewer number of instruction words.

[1] Left-down circuit, 7 words


- [2] Middle-down circuit, 8 words
- [3] Right-down circuit, 10 words

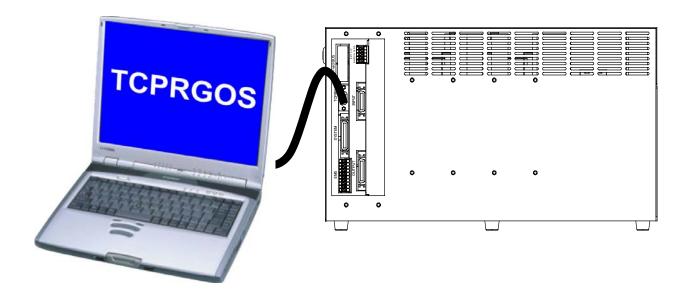
Left-down circuit [1] shown above is more efficient than circuits [2] and [3]. The number of instruction words of circuit [1], [2] and [3] is seven (7), eight (8) and ten (10), respectively.

All input instructions including the contact and connection ones are counted as one (1) word or two (2) words.

The output (coil) instructions including the application instruction are counted as one (1) word to five (5) words. For details, see Para. 7.2.

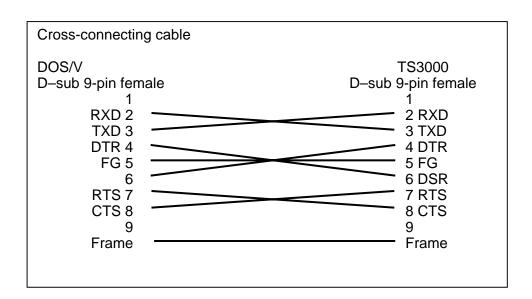
The following circuits require fewer words when formed left-down.

Section 8 TCPRGOS


TCPRGOS–W(E) is the sequence program development tool which operates on your personal computer.

8.1 Operating Environment of TCPRGOS

Items	Conditions
CPU	Personal computer incorporating CPU whose capacity is Pentium 200 MHz or over (Use of Pentium II 233 MHz or over is recommended.).
Operating system	Windows98 or WindowsNT 4.0/2000/XP
Hard disk capacity	Free space of 20 M byte or over
Minimum available memory	Windows98: 16 MB or over (Use of 32 MB or over is recommended.)
	WindowsNT: 32 MB or over
	Windows 2000: 128 MB or over
	Windows XP: 256 MB or over
CD drive	Required for installing TCPRGOS.
Display	Display that can be connected with computer and designed for Windows98 or WindowsNT with resolution of 640×480 dots or over. (Recommendable resolution is 1024×768 dots or over.)
RS232C serial communication port	One (1) port
Others	Keyboard, mouse, printer, FD, modem (for remote maintenance system) that can be connected with computer and designed for Windows98 or WindowsNT.

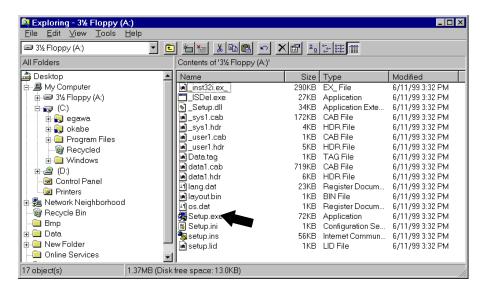

8.2 Connection

Connect the TS3000 TCPRG port with the COM port of your personal computer, using a 9-pin cross cable.

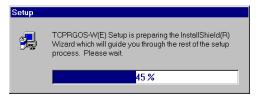
PC COM port

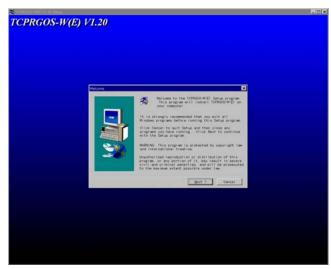
TS3000 TCPRG port

8.3 How to Install the TCPRGOS



CAUTION


Before upgrading, be sure to uninstall the TCPRGOS–W(E) of the previous version. For details, see Section 6.


This paragraph describes the setup procedures when the floppy drive is set as the "A" drive.

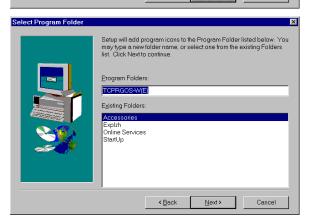
Start up the Explorer and double-click "SETUP.EXE" in the "A" drive.

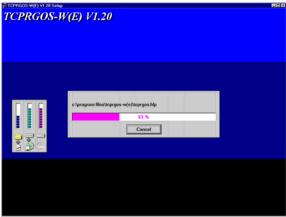
• The TCPRGOS–W(E) V*.** Installer starts. Press the [Next] button.

Setup will install TCPRGOS-W(E) in the following folder.

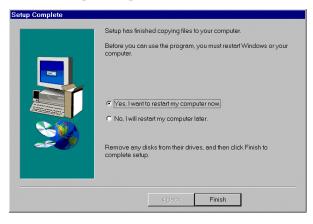
To install to this folder, click Next.

To install to a different folder, click Browse and select another folder.

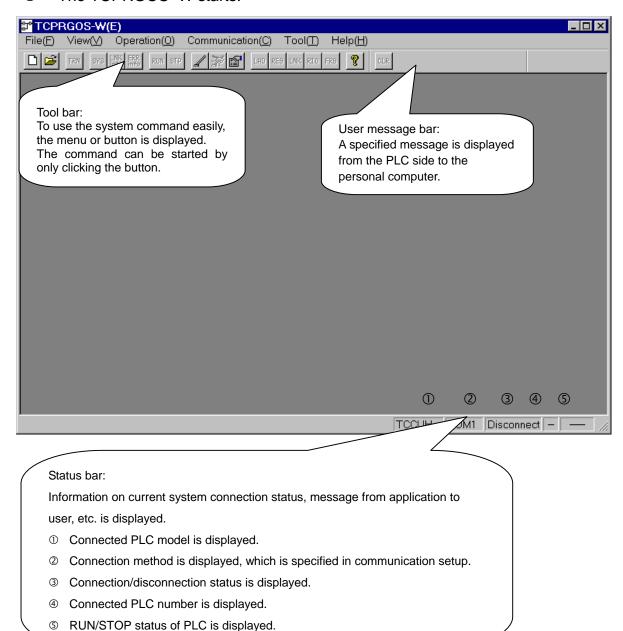

You can choose not to install TCPRGOS-W(E) by clicking Cancel to exit Setup.


Destination Folder

C:\Program Files\TCPRGOS-W(E)


Browse...

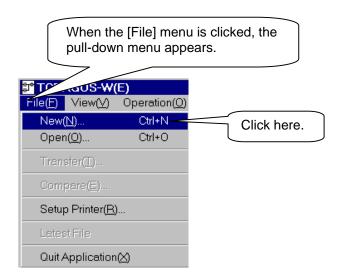
Now, execute the operation according to the directions of the Installer.



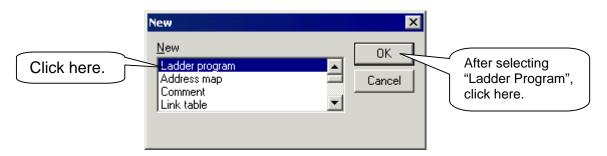
Click the [Finish] button, and the TCPRGOS–W(E) has been installed.

8.4 Starting the TCPRGOS

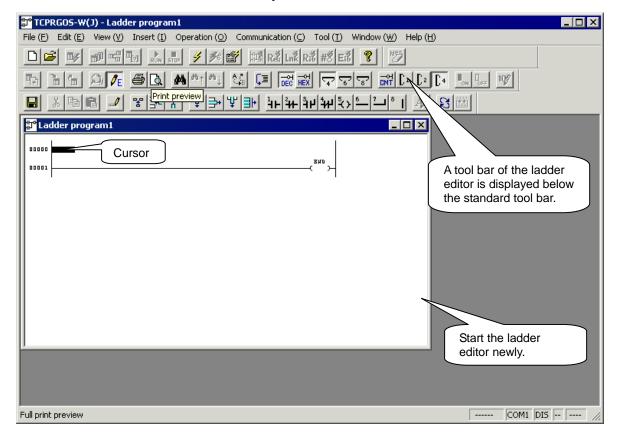
- Starting TCPRGOS–W
 - ① Double-click the TCPRGOS-W icon on the desktop.
 - ② The TCPRGOS-W starts.


8.5 Creating a Circuit

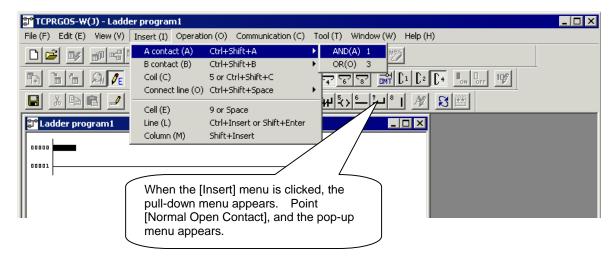
- Creating a New Ladder Program and Saving in a File
 - **★** Program to be created.



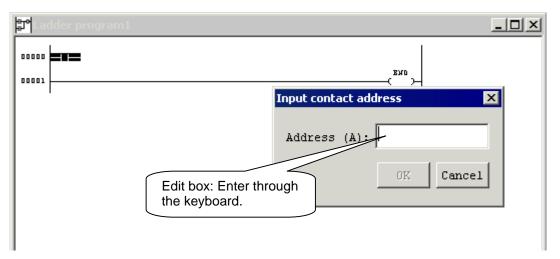
8.5.1 Start of New Ladder Editor


① Click [New] from the [File] menu.

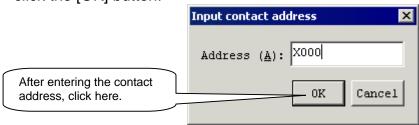
② As the [New] dialog box appears, click [Ladder Program] from the [New] box.

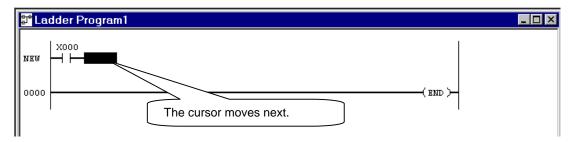


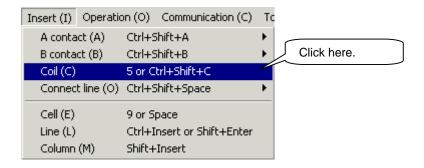
The ladder editor starts newly.

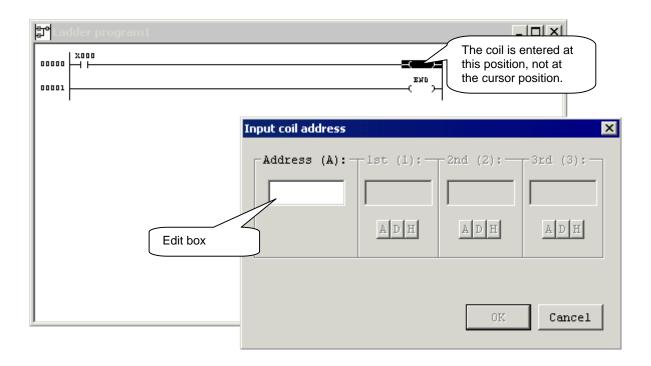


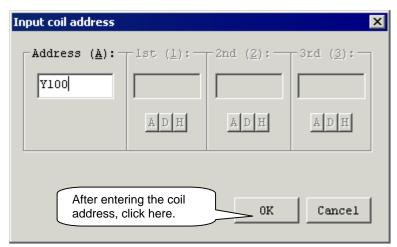
8.5.2 Creation of Circuit


① Point [Normal Open Contact] from the [Insert] menu, then click [AND].

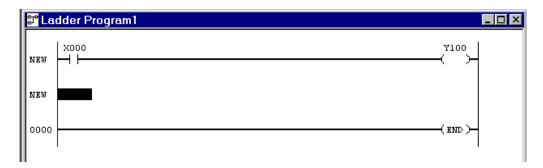

The symbol of normal open contact is entered at the cursor position and the contact address input dialog box appears.


Move the cursor to the contact address edit box and enter "X000". Then click the [OK] button.


The normal open contact of address X000 is entered.

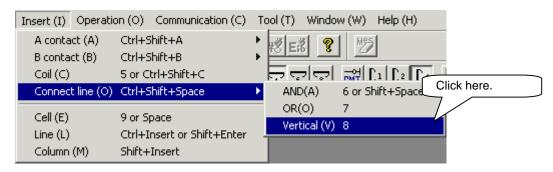


© Click [Coil] from the [Insert] menu.

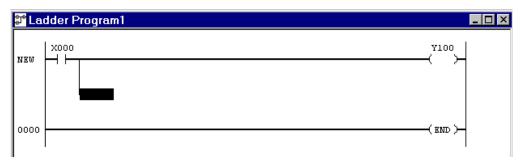

© The symbol of coil is entered and the coil input dialog box appears.

② Enter "Y100" in the coil address edit box and click the [OK] button.

The following circuit is created.

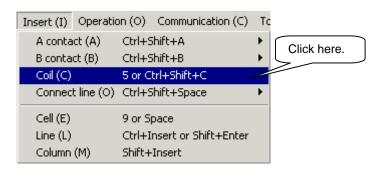


One Point Advice

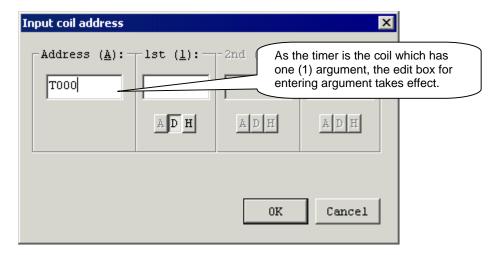

- Cursor movement
 - If a desired position is clicked by means of the mouse, the cursor moves to that position. The cursor can also move vertically and horizontally by means of the arrow keys. The symbol other than coil is entered at the cursor position.
- Address change
 - When the mouse is moved to an already entered contact or coil and double-clicked, the address input dialog box appears. Move the cursor to the edit box where the address is to be entered, modify the address, then click the [OK] button.

8.5.3 Input of Perpendicular Line Symbol

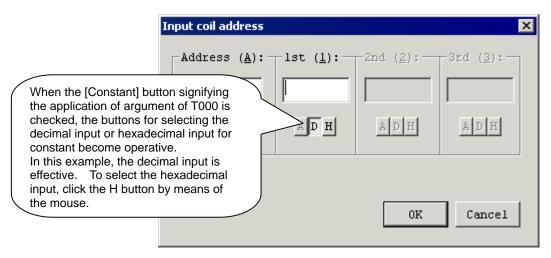
① Point [Connecting Line] from the [Insert] menu and click [Perpendicular].

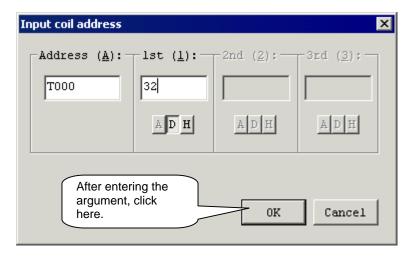


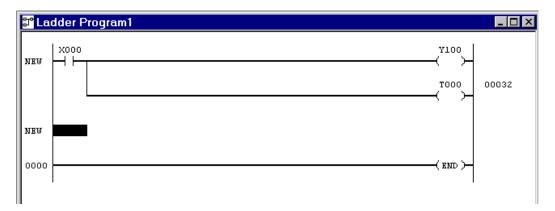
② The symbol of perpendicular line is entered.



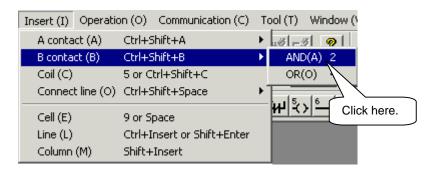
8.5.4 Input of Timer in Coil


① Click [Coil] from the [Insert] menu.


- The symbol of coil is entered and the coil address input dialog box appears.
- 3 Enter "T000" in the coil address.

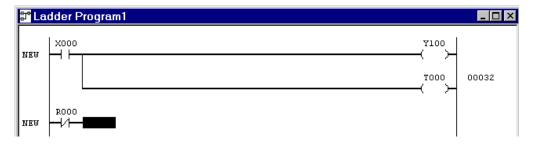

4 Click the first argument edit box to move the cursor.

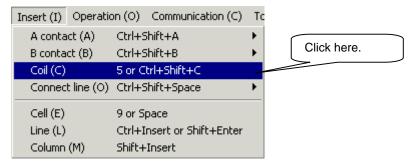
© Enter "32" in the first argument and click the [OK] button.



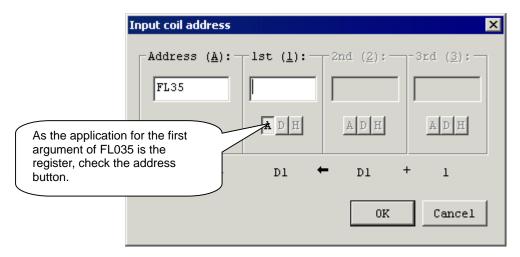
© The following circuit is created.

8.5.5 Input of Function Command in Coil

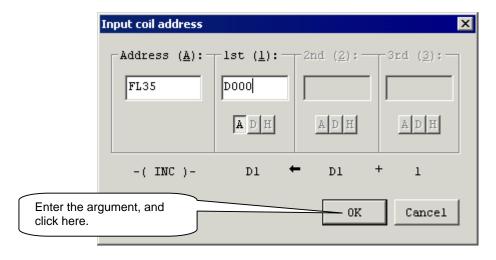

① Point [Normal Close Contact] from the [Insert] menu and click [AND].


The symbol of normal close contact is entered and the contact address input dialog box appears. Enter the contact address "R000".

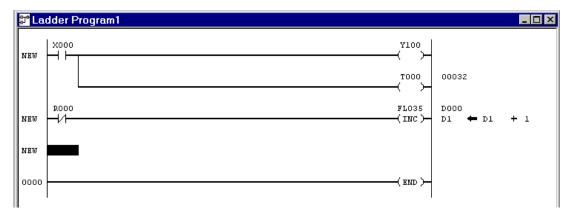
The normal close contact of R000 is entered.

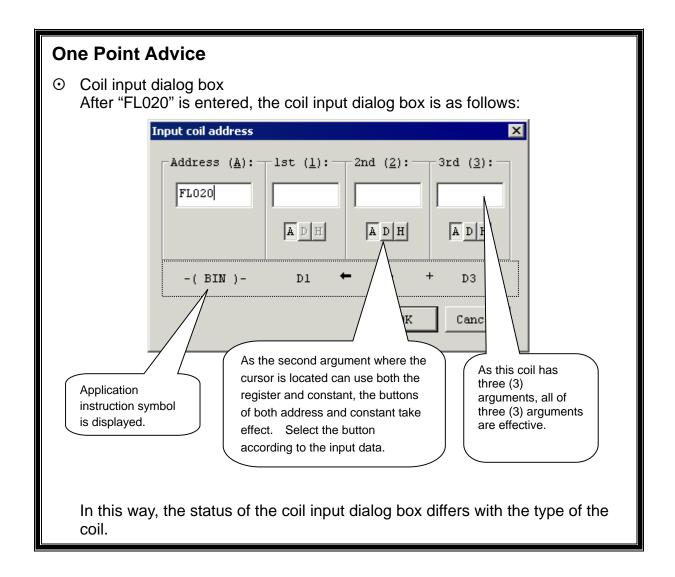


Click [Coil] from the [Insert] menu and the coil address input dialog box appears.

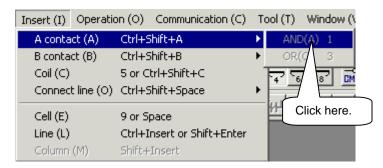


S The symbol of coil is entered and the coil address input dialog box appears.

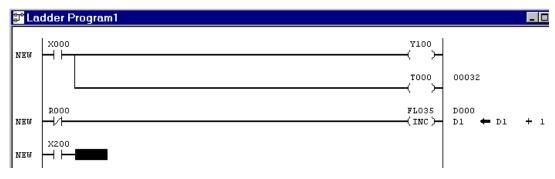

© Enter "FL035" in the coil address, and move the cursor to the first argument edit box.

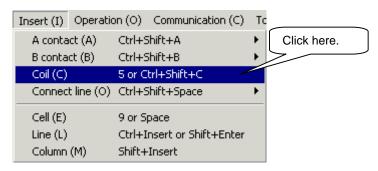


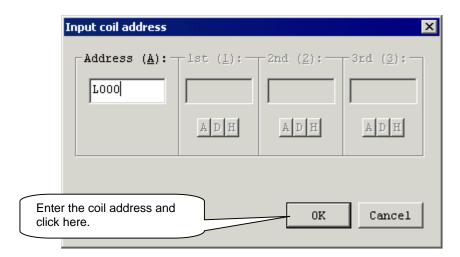
② Enter "D000" in the first argument.

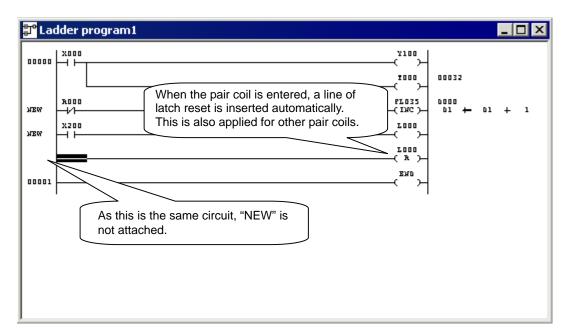

The following circuit is created.

8.5.6 Input of Pair Coil


① Point [Normal Open Contact] from the [Insert] menu and click [AND].

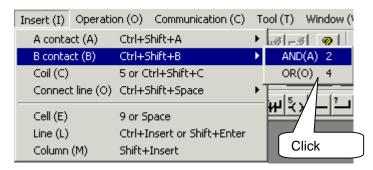

The symbol of normal open contact is entered and the contact address input dialog box appears. Enter "X200" in the contact address.


The normal open contact of X200 is entered.

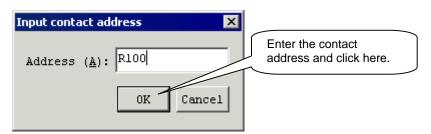

④ Click [Coil] from the [Insert] menu.

⑤ The symbol of coil is entered and the coil address input dialog box appears. Enter "L000" in the coil address.

© The following circuit is created.

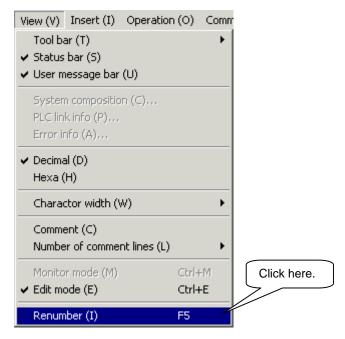


8.5.7 Change of Connecting Cine with Contact

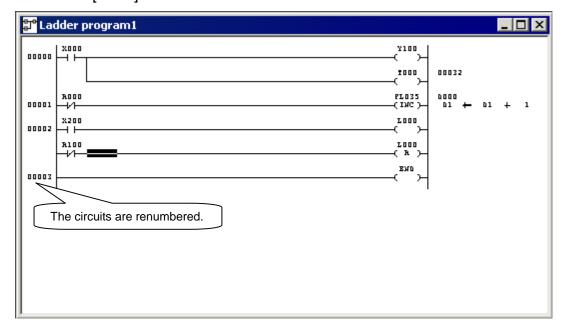

① Move the mouse to the head of the latch reset and click. The cursor moves to the head position.

② Point [Normal Close Contact] from the [Insert] menu and click [AND].

The symbol of normal close contact is entered and the contact address input dialog box appears. Enter "R100" in the contact address.



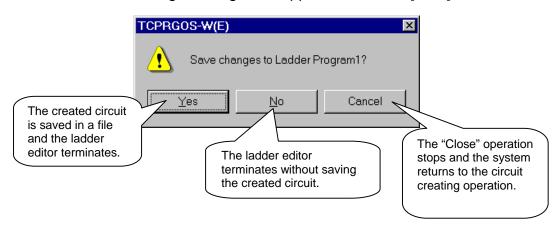
The normal close contact is inserted at a place where the connecting line was input and the circuit is changed as shown below.



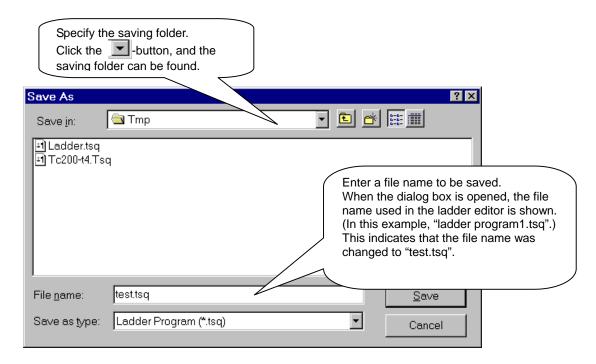
8.5.8 Renumber of Circuits

① Click [Renumber] from the [View] menu.

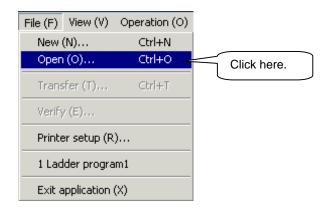
② Words [NEW] are cleared and the circuits are renumbered.

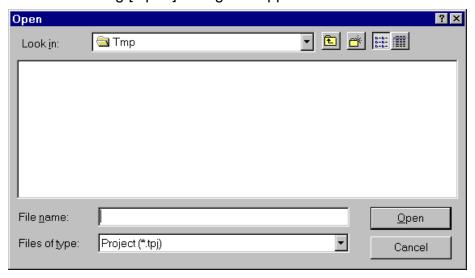


8.5.9 Saving in File

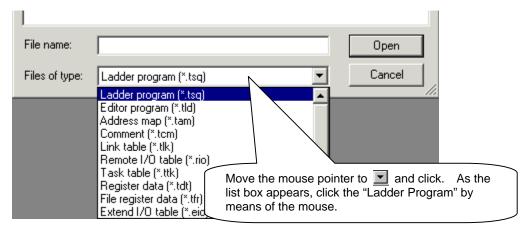

① Click [Close] from the [File] menu.

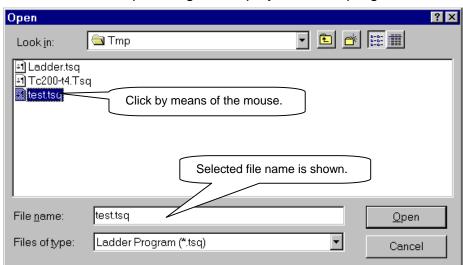
② As the following message box appears, click the [YES] button.


The following file saving dialog box appears.


Click the [Save] button. The ladder editor is closed and the created circuit
 is saved in the file of "test.tsq".

8.5.10 Opening of Existing File

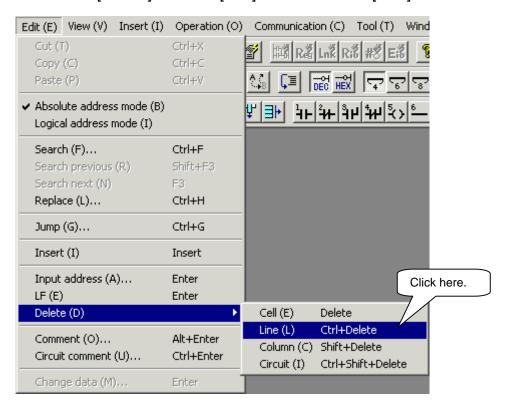

① Click [Open] from the [File] menu.



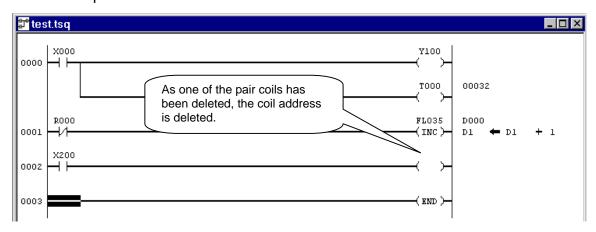
② The following [Open] dialog box appears.

3 Change the type of file to "Ladder Program".

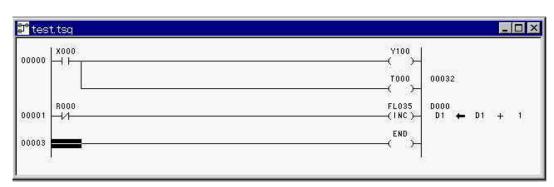
Select "test.tsq" among the displayed ladder programs.

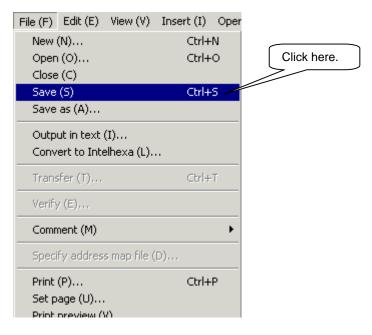

© Click the [Open] button, and the file of "test.tsq" is opened.

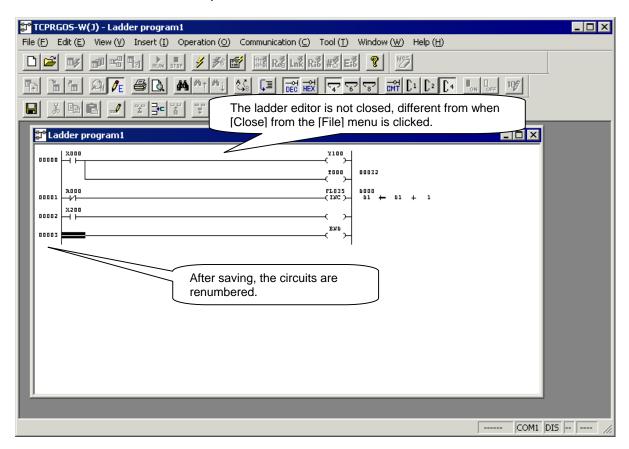
8.5.11 Modifying and Saving of Existing Circuit


① Move the cursor to the circuit of the latch reset.

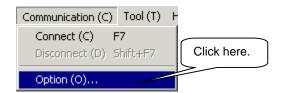
Point [Delete] from the [Edit] menu and click [Line].

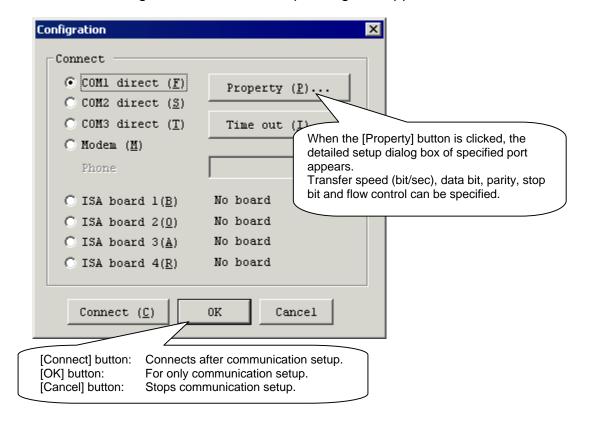

The specified line is deleted.


- 4 Move the mouse pointer to circuit number 0002 and click (circuit selection).
- S Point [Delete] from the [Edit] menu and click [Circuit].


© The circuit of circuit number 0002 is deleted.

O Click [Save] from the [File] menu.

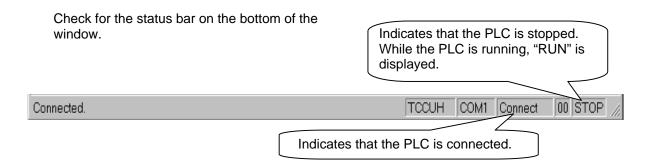

The file of "test.tsq" is overwritten.


8.6 Transferring Circuit

8.6.1 Check for Communication Setup

① Click [Option] from the [Communication] menu.

② The following communication setup dialog box appears.

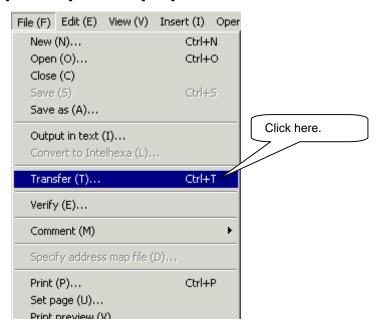

Caution!

The baud rate is changed over automatically.

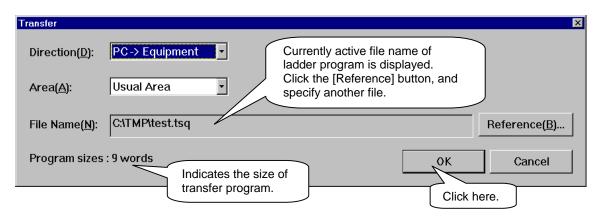
Select the connection method alone. Normally, the property need not be changed.

8.6.2 Connection

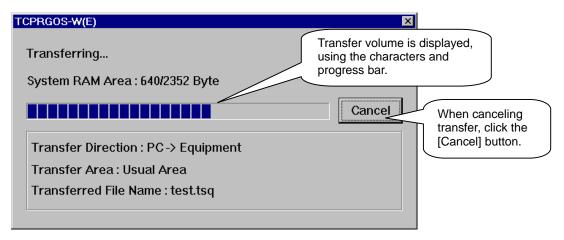
① Click [Connect] from the [Communication] menu, and the PLC is connected with the personal computer.

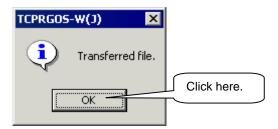


Caution!

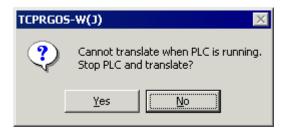

Baud rate that can be connected is recognized automatically, and the connected baud rate is displayed on the status bar.

8.6.3 Transfer


① Click [Transfer] from the [File] menu.

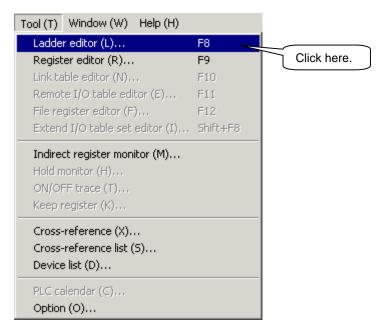

② When the following transfer dialog box appears, click the [OK] button.

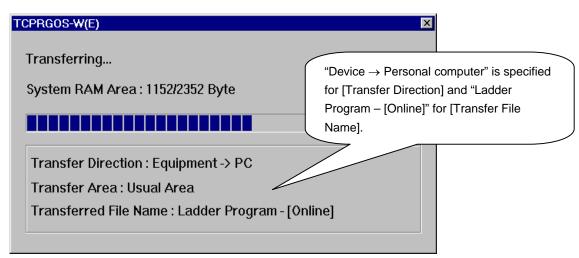
Transfer starts. During the transfer, the following transfer progress dialog box appears.



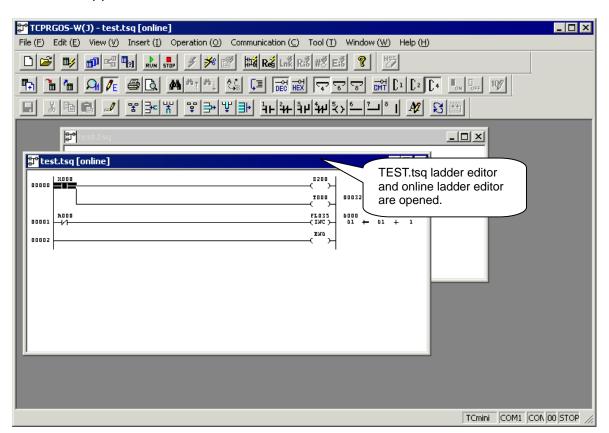
When the transfer has finished, the transfer finish message box appears. Click the [OK] button then.

Caution!

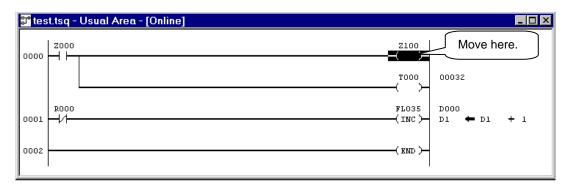

While the TCmini is running, the following message box appears. Select [No] because data change is not possible while the TCmini is running.


8.7 Online Operation

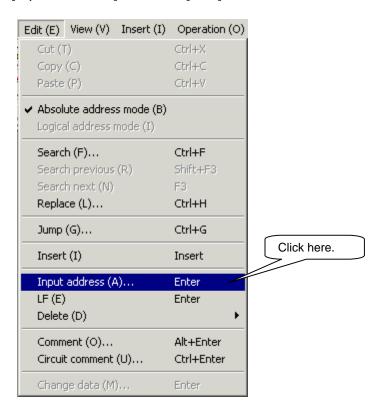
8.7.1 Start Online Ladder Editor


① Click [Ladder Editor] from the [Tool] menu.

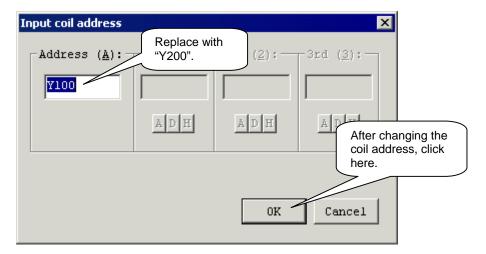
② Data transfer from the PLC to the personal computer starts and transfer progress dialog box is displayed.

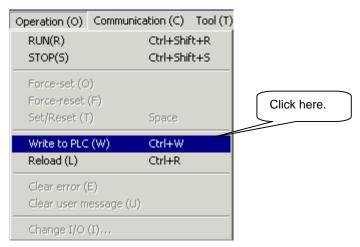


When the transfer has finished, the transfer progress dialog box disappears and the online ladder editor starts.

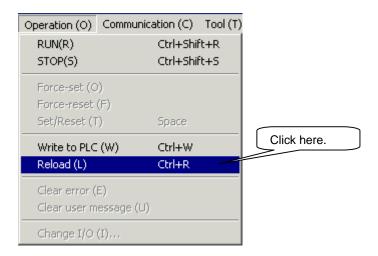


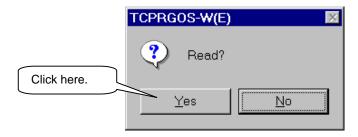
8.7.2 Change of Online Ladder Editor Circuit


- ★ Modification can be made in the same manner as the offline ladder editor. To change the coil address, observe the following steps.
- ① Move the cursor to the coil (Z100) of circuit number 0000.


② Click [Input Address] from the [Edit] menu.

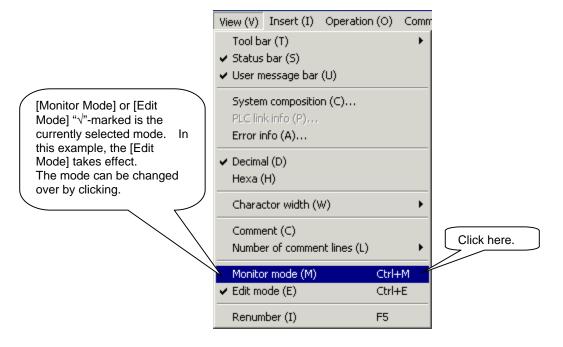
3 As the coil address input dialog box appears, change the coil address to "Y200".


- The coil address is changed.
- © Click [Write to PLC] from the [Operation] menu.


6 As the following message box appears, click the [YES] button.

- The transfer progress dialog box is displayed and writing to PLC starts.
 When it has finished, the transfer progress dialog box is cleared.
- ® Click [Reload] from the [Operation] menu.

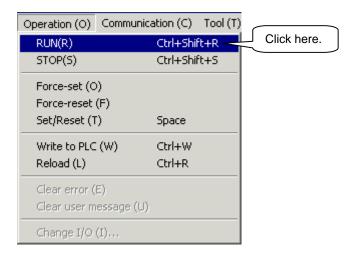
As the following message dialog box appears, click the [YES] button.



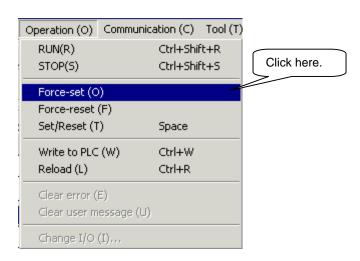
- The online ladder editor is closed and the transfer progress dialog box appears. Then the transfer starts.
- When the transfer has finished, the transfer progress dialog box is closed and the online ladder editor starts again.

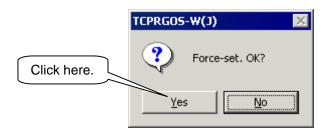

8.8 Monitor

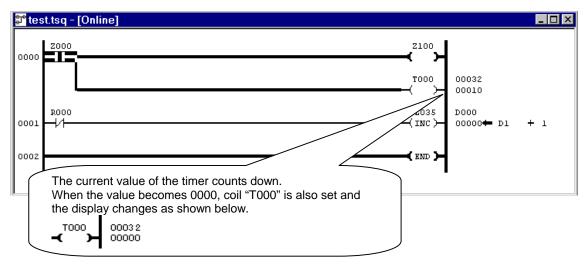
8.8.1 Selection of Monitor Mode

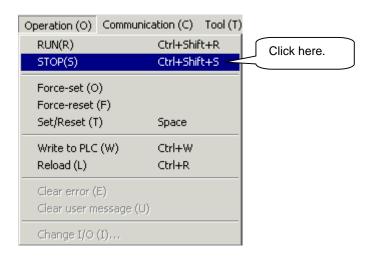

① Click [Monitor Mode] from the [View] menu.

② The monitor mode replaces the edit mode.

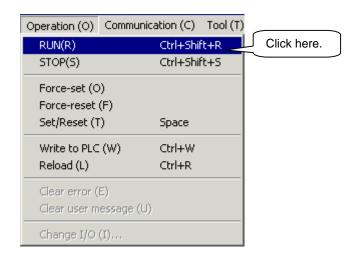

- 8.8.2 Designation of PLC RUN or STOP and Compulsive Setting of Contact
 - ① Click [RUN] from the [Operation] menu.


② As the following message box appears, click the [YES] button to run the PLC.

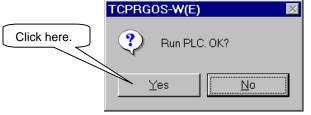

Make sure that the cursor is located at the normal open contact of "Z000" in circuit number 0000. Then click [Force-set] from the [Operation] menu.


As the following message box appears, click the [YES] button.

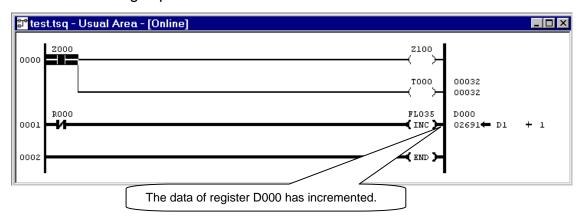
S The normal open contact of "Z000" in circuit number 0000 is compulsively set.



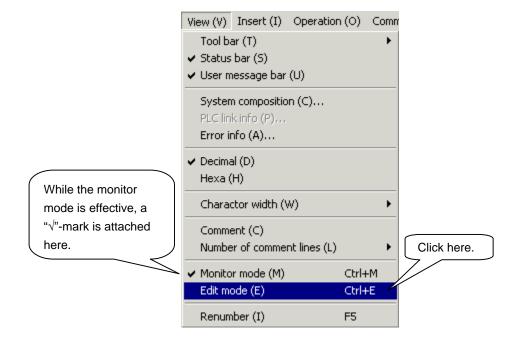
© Click [STOP] from the [Operation] menu to stop the PLC.



The normal close contact is set and monitored as shown below.


® Click [RUN] from the [Operation] menu.

As the following message box appears, click the [YES] button to run the PLC.



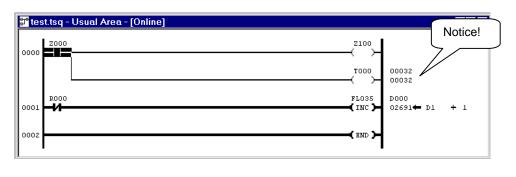
Monitoring is performed as shown below.

8.8.3 Quit of Monitor Mode

① Click [Edit Mode] from the [View], and the monitor mode terminates with the edit mode selected.

Caution!

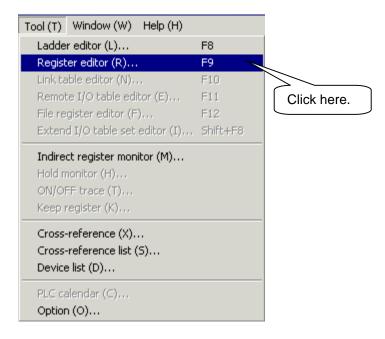
In the monitor mode, editing of a circuit (modification, addition, deletion, etc.) is not allowed. Edit after selecting the edit mode. A modified circuit cannot be monitored unless written to the PLC. After writing it to the PLC, read and call the latest online ladder editor.

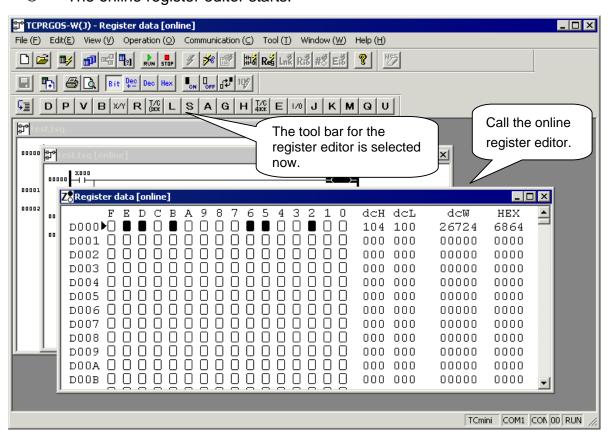

One Point Advice

O Changeover of decimal/hexadecimal notation

The notation comes in two (2) types; decimal notation and hexadecimal notation.

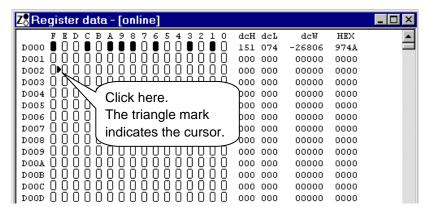
To change over the notation, click [Decimal] or [Hexadecimal] from the [View] menu. The menu item marked with " $\sqrt{}$ " on the left side is the currently selected notation.


Example of hexadecimal notation:

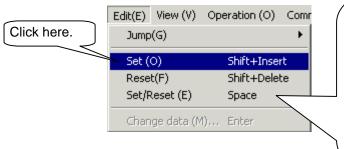

8.9 Monitoring Register Data

8.9.1 Start of Online Register Editor

① Click [Register Editor] from the [Tool] menu.



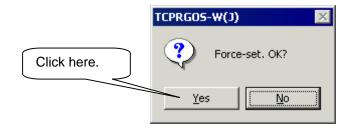
② The online register editor starts.



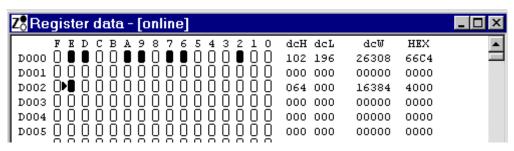
8.9.2 Compulsive Setting of Device

① Click Bit E of D002 by means of the mouse and move the cursor.

② Click [Set] from the [Edit] menu.

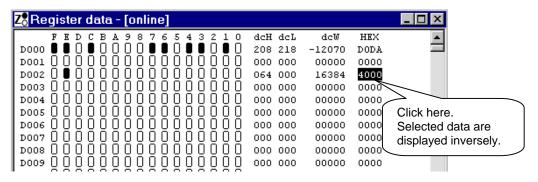


Set: Compulsively sets a reset device at the cursor position.

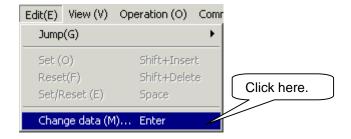

Reset: Compulsively resets a set device at the cursor position.

Set/Reset: Compulsively changes over the set/reset status of a device at the cursor position.

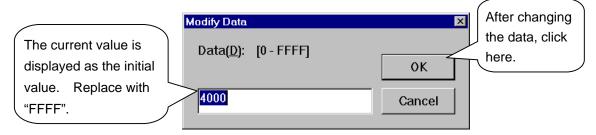
3 As the following message dialog appears, click the [OK] button.

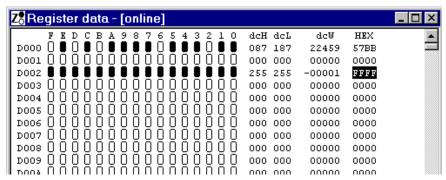


④ Bit E of D000 is set compulsively.

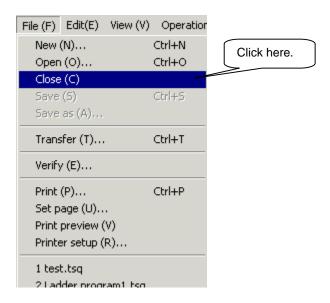


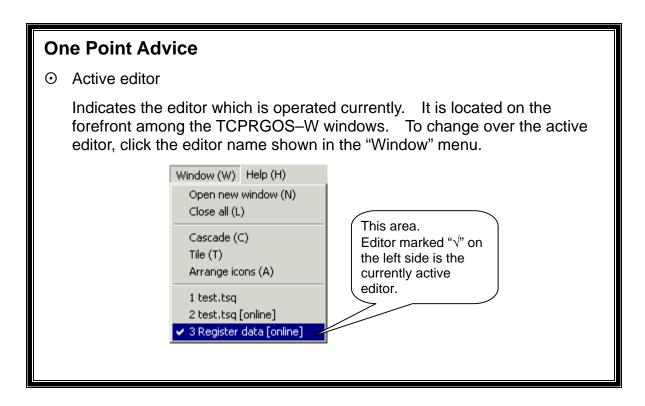
8.9.3 Modification of Word Data Specified by Address


① Move the mouse pointer to the hexadecimal data area of D002, then click.


② Click [Change Data] from the [Edit] menu.

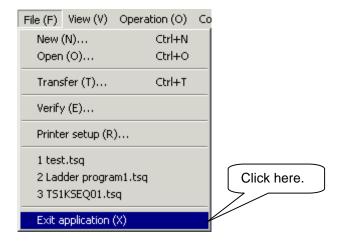
The following [Change Data] dialog box appears. Change the data to "FFFF" and click the [OK] button.


④ The data are changed.


8.10 Quitting the TCPRGOS

8.10.1 Exit from Active Editor

① Click [Close] from the [File] menu. The active editor terminates.



② Repeat Step ① above and quit all editors (online ladder editor, online register editor, offline ladder editor ("test.tsq")).

8.10.2 Quit of TCPRGOS-W

① Click [Quit Application] from the [File] menu. The TCPRGOS–W terminates to close the window.

Caution!

You need not quit the TCPRGOS–W after closing all active editors. You can quit by only clicking [Quit Application] from the [File] menu with the editors opened. When change was made in any editor, appropriate message box appears to ask whether each change should be saved or not.

8.11 How to Uninstall

Before uninstalling the TCPRGOS–W(E), delete the registered OCX file. Otherwise, unnecessary key is left in the registry.

Deletion of registered OCX file

Double-click and execute "Unregist.bat" in the install directory.

When the system displays a message box, register or deletion of OCX file has finished.

Uninstall the **TCPRGOS–W(E)** by selecting [Control panel] – [Add or delete application].

Section 9 Advice of Sequence Program Creation

This section describes some sample circuits which you can refer to when creating a sequence program. Refer to the appendix system sequence also.

9.1 Turning ON/OFF External Output by DOUT Command

H000 turns on and off by the DOUT(1) and DOUT(-1) commands, respectively. As Y100 operates, interlocked with H100 ON/OFF, the H000 state can be output to an external device, interlocked with the DOUT command.

(The H000 state can be output to any destination by changing the output relay address.)

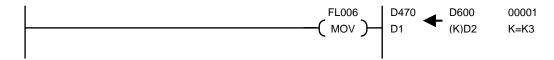
9.2 Input of External Signal by DIN Command

The G000 state is read by means of DIN(1) and DIN(-1) commands.

As G000 operates, interlocked with X000 ON/OFF, the X000 state can be read by the robot's DIN1 command.

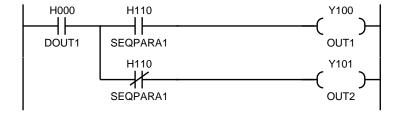
(Any input destination can be ready by the DIN(1) command by changing the input relay address.)

9.3 Output of AUTORUN Signal to External Device

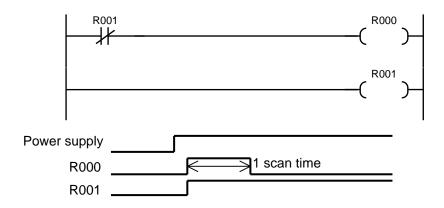

H138 is the interface relay indicating that the robot is working in the automatic operation. This state is output to an external device. (It can be output to any output designation by changing the output relay address.)

9.4 Generating Alarm in TS1000 by External Signal

When external input IN3 (X002) turns on, G110 turns on accordingly. When G110 turns on, an alarm (1–037) is generated in the robot controller.

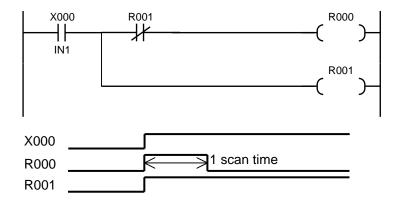

(The alarm can be generated by any input by changing the input relay address.)

9.5 Output of Value to Control Panel


The content of D600 is transferred to D470 by extension instruction (or command) FL006. The FL command executes a command as per the signal state. In this example, as the signal is always ON, data is transferred in each scanning. In D600, a value written to system variable PLCDATAW1 (robot language) by the robot program is stored. In the above program, this value is transferred to D470 which is the exclusive register indicating a 7-segment value of the control panel. By changing the source register, any data such as constant and sequence operation result can be displayed.

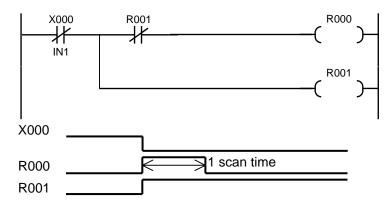
9.6 Change of Output Destination by Sequence Parameter

H110 is the relay which can be turned on and off by user parameter of TS3000. When "1" (ON) is specified for appropriate parameter, DOUT(1) turns on Y100. When "0" (OFF) is set, DOUT(1) turns on Y101. When SEQPARA* of H110 ~ H117 is used, you can change the sequence motion by the robot parameter without changing the ladder sequence.


9.7 Circuit Generating 1 Pulse at Power ON

Just after the power is turned on, R000 turns on in the initial scanning. As R001 is ON in the 2nd scanning, R000 turns off.

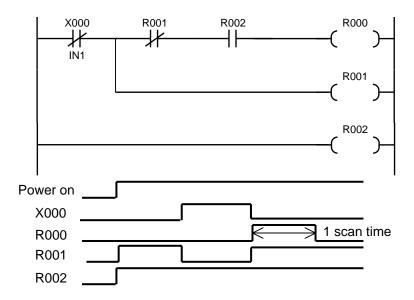
This can be realized by one (1) command when F*63 is used.


9.8 Circuit Generating 1 Pulse at Start

At the start of input X000, one (1) pulse is generated.

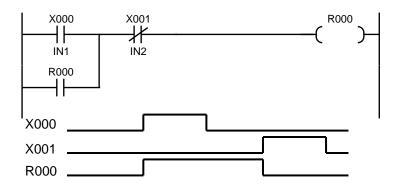
Note: If the PLC starts running while X000 is ON, R000 turns on in the 1st scanning.

9.9 Circuit Generating 1 Pulse at Fall (1)

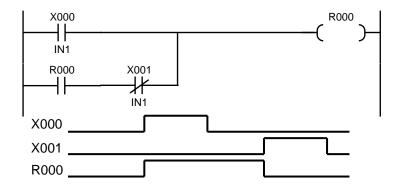


With the fall of input X000, one (1) pulse is generated.

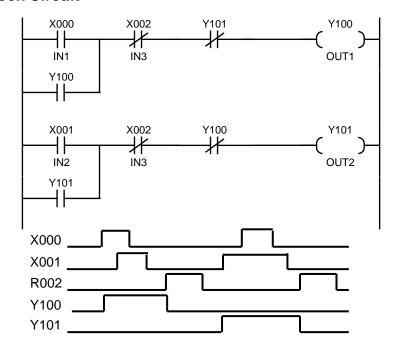
Caution: When X000 is OFF, R000 turns on in the 1st scanning after power ON. (Necessary measures are taken in Para. 9.10.)


If the PLC starts running while X000 is OFF, R000 turns on in the 1st scanning.

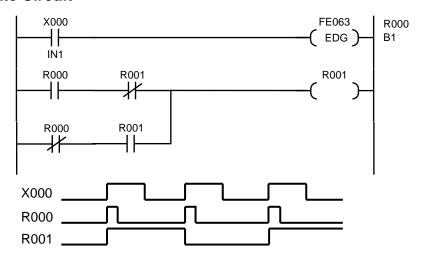
9.10 Circuit Generating 1 Pulse at Fall (2)


With the fall of input X000, one (1) pulse is generated. R000 will not turn on at power ON.

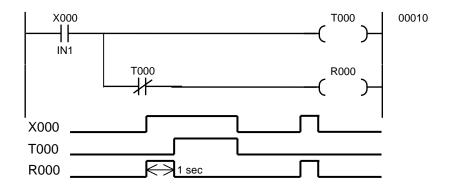
9.11 Self-Holding Circuit (Priority Is Given to Reset)


When X000 is turned on once while X001 is OFF, output R000 turns on, which is kept even after X000 is OFF. When X001 turns on, R000 turns off.

9.12 Self-Holding Circuit (Priority Is Given to Set)

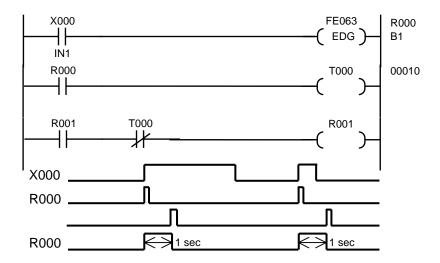

When X000 is turned on once while X001 is OFF, output R000 turns on, which is kept even after X000 is OFF. When X001 turns on, R000 turns off. If X000 is ON while X001 is ON, R000 turns on.

9.13 Interlock Circuit

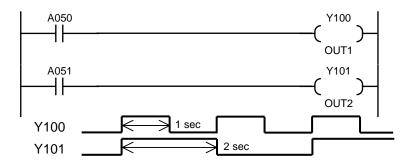

Either X000 or X001 whose circuit turns on first is ON, and the other circuit will not turn on. When both circuits are turned on at the same time, the upper circuit (Y100) turns on by the scanning system. Useful for the motor CW/CCW circuit.

9.14 Alternate Circuit

Every time input X000 has turned on, output R001 is reversed. Thus, an alternate output can be given, using the normal open contact of the momentary switch.

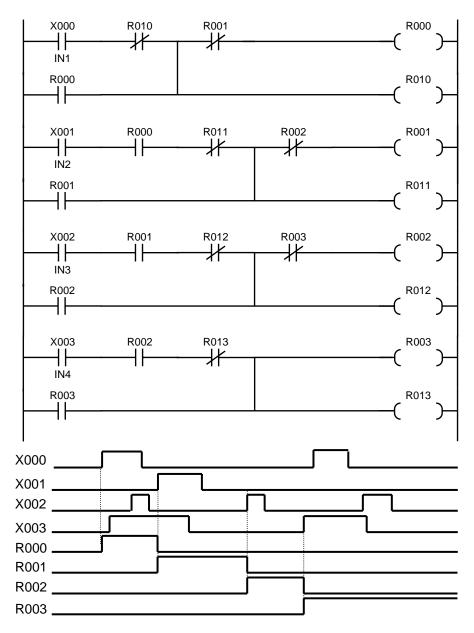

9.15 Non-Modal Timer Circuit

When input X000 turns on, R000 turns on for the time set on the timer.


If the ON time of input X000 is shorter than the timer-set value, the ON time of R000 is identical with the ON time of X000.

9.16 Non-Modal Start Timer Circuit

When input X000 turns on, R000 turns on for the time set on the timer.


9.17 Circuit Turning ON and OFF at Predetermined Intervals

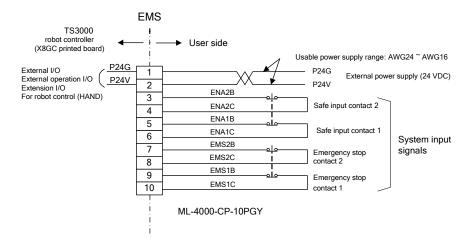
A050 is the special auxiliary relay which repeats ON and OFF at one (1)-second intervals.

A051 is the special auxiliary relay which repeats ON and OFF at two (2)-second intervals.

9.18 Step Sequence Circuit

When X000 turns on, R000 turns on accordingly.

When X001 is ON, R001 is ON with R000 OFF.


When X002 is ON, R002 is ON with R001 OFF.

Section 10 Troubleshooting

10.1 Robot Servo Will Not Turn ON

- Is interface relay SVOFF (R33C) turned on?
 When the SVOFF signal turns off, the servo turns off. Design the sequence and external circuit, therefore, so that interface relay SVOFF can be turned on.
- ② Is the alarm (8–014 Emergency Stop SW ON) generated? If this alarm is generated, make sure that the EMERGENCY stop pushbutton switch is not pressed. In addition to this, make sure that the TP or TP jumper connector is connected.

Wiring of the EMERGENCY stop switch is the special line. Perform check on the wiring of EMS** and EMA** pin connected to the EMS connector.

10.2 Program Cannot Run

- ① Is the program selected?
- ② Is the servo ON?
- ③ Is interface relay STOP (R338) ON?
 When the STOP signal turns off, the robot stops. Design the sequence and external circuit, therefore, so that interface relay STOP can be turned on.
- Is interface relay BREAK (R33B) ON? Like the STOP signal, when the BREAK signal turns off, the robot slows down and stops.

10.3 Sequence Program Cannot Be Transferred by TCPRGOS

The sequence program areas which can be used by the user are areas 1 and 2. Change the sequence area, referring to Para. 2.4.

10.4 Sequence Program Is Cleared at Power ON

Sequence program area 1 is the RAM area for debugging. The sequence program is cleared after the power is turned off, then on again. To use the sequence program after debugging (check of operation), transfer it to program area 2 beforehand.

10.5 TCPRGOS Will Not Start

Are the specifications of your personal computer identical with those of the TCPRGOS? (See Para. 8.1.)

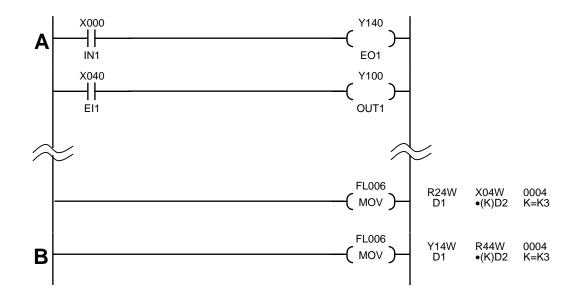
If the TCPRGOS will not operate just after it is installed, the DLL file version may be old. When this is the case, install the newest DLL file according to the following procedures.

① Quit all other applications, then make sure that the following files are present in the system directory.

MFC42.DLL MFC42LOC.DLL MSVCRT.DLL

CMCTLJP.DLL COMCTL32.OCX

② Confirm the version of each file. If it is older than the version below, delete the file.


File name	Version
MFC42.DLL	5.0.000
MFC42LOC.DLL	5.0.000
MSVCRT.DLL	5.00.7303
CMCTLJP.DLL	5.01.4319
COMCTL32.OCX	5.01.4319

Right-click a relevant file and select [Property]. When the dialog window is displayed, select the version information tag and check for the version.

③ Install the TCPRGOS software again, referring to Para. 8.3.

10.6 Extension I/O Does Not Operate (Malfunctions)

- The extension I/O RUN lamp is off.
 See Para. 3.8 and check the connection and user parameter settings.
- ② The extension I/O sequence is defined twice.

In the above figure, the X000 input is output to Y140 at **A**, and the state of R440 to R47F is transferred (output) to Y140 to Y17F at **B**. As a result, the R440 state is output to Y140, and the **A** circuit result is not output.

To prevent this problem, the B circuit must be deleted, but this will also delete the transfer to Y141 to Y17F. Therefore, a separate circuit needs to be added.

10.7 Sequence-Related Alarm Occurred in TS3000

8-227 PLC STOP

Possible Cause: The sequence of the PLC remains stopped.

Remedies: If the sequence program has been stopped intentionally from

the TCPRGOS, there is no problem at all. Turn the power off,

then on again, or start the sequence program from the

TCPRGOS.

This alarm may occur if the hardware went wrong or an error was found in the sequence program. When this happens, the following alarm (1–***) is also generated at the same time. Identify and remove the cause of the error to start the PLC.

1-164 PLC Backup data error

Possible Cause: The sequence program of TCmini has been destroyed.

Remedy: Transfer the program again, using the TCPRGOS.

If a backup RAM (domain 3) is used, set to domain 1, and turn

the power off, then on again to transfer the program.

1-166 PLC Remote unit error

Possible Causes:

The setting of connecting the extension I/O unit is not

identical with the user parameter setting.

② Wiring of the cable is done incorrectly.

The connected I/O unit will not operate normally.

3.7.3.)

② Connect the cable. (See Para. 3.7.2.)

If the external power supply is used, turn on the power of

the extension I/O unit before the controller power.

If the I/O unit has malfunctioned, contact our after-sale

service agent in your territory.

1-169 PLC Undefined label

Possible Cause: The label used in the sequence program is not defined.

Remedy: Correct the sequence program, using the TCPRGOS.

1-170 PLC Invalid command

Possible Cause: An illegal command (i.e., instruction word) is used in the

sequence program.

Remedy: Correct the sequence program, using the TCPRGOS.

1-173 PLC Overlap label

Possible Cause: Duplicate definition of the label used in the sequence program.

Remedy: Correct the sequence program, using the TCPRGOS.

Section 11 Appendix

List of Relays

I/O

1/0																
Bit	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
X00W	IN16	IN15	IN14	IN13	IN12	IN11	IN10	IN9	IN8	IN7	IN6	IN5	IN4	IN3	IN2	IN1
X01W	IN32	IN31	IN30	IN29	IN28	IN27	IN26	IN25	IN24	IN23	IN22	IN21	IN20	IN19	IN18	IN17
X02W	IN48	IN47	IN46	IN45	IN44	IN43	IN42	IN41	IN40	IN39	IN38	IN37	IN36	IN35	UFI2	UFI1
X03W	HI8	HI7	HI6	HI5	HI4	HI3	HI2	HI1	LI8	LI7	LI6	LI5	LI4	LI3	LI2	LI1
X04W	EI16	El15	EI14	EI13	El12	EI11	EI10	EI9	EI8	EI7	EI6	EI5	EI4	EI3	El2	EI1
X05W	El32	El31	EI30	El29	El28	El27	El26	El25	El24	EI23	El22	El21	El20	EI19	EI18	EI17
X06W	EI48	El47	El46	EI45	El44	El43	El42	El41	El40	El39	EI38	EI37	El36	El35	El34	EI33
X07W	EI64	El63	El62	EI61	EI60	EI59	EI58	El57	El56	EI55	EI54	EI53	El52	EI51	El50	El49
Y10W	OUT16	OUT15	OUT14	OUT13	OUT12	OUT11	OUT10	OUT9	8TUO	OUT7	OUT6	OUT5	OUT4	OUT3	OUT2	OUT1
Y11W	OUT32	OUT31	OUT30	OUT29	OUT28	OUT27	OUT26	OUT25	OUT24	OUT23	OUT22	OUT21	OUT20	OUT19	OUT18	OUT17
Y12W	OUT48	OUT47	OUT46	OUT45	OUT44	OUT43	OUT42	OUT41	OUT40	OUT39	OUT38	OUT37	OUT36	OUT35	UFO2	UFO1
Y13W	HO8	HO7	HO6	HO5	HO4	HO3	HO2	HO1								
Y14W	EO16	EO15	EO14	EO13	EO12	EO11	EO10	EO9	EO8	EO7	EO6	EO5	EO4	EO3	EO2	EO1
Y15W	EO32	EO31	EO30	EO29	EO28	EO27	EO26	EO25	EO24	EO23	EO22	EO21	EO20	EO19	EO18	EO17
Y16W	EO48	EO47	EO46	EO45	EO44	EO43	EO42	EO41	EO40	EO39	EO38	EO37	EO36	EO35	EO34	EO33
Y17W	EO64	EO63	EO62	EO61	EO60	EO59	EO58	EO57	EO56	EO55	EO54	EO53	EO52	EO51	EO50	EO49
X20W	FI16	FI15	FI14	FI13	FI12	FI11	FI10	FI9	FI8	FI7	FI6	FI5	FI4	FI3	FI2	FI1
X21W	FI32	FI31	FI30	FI29	FI28	FI27	FI26	FI25	FI24	FI23	FI22	FI21	FI20	FI19	FI18	FI17
X22W	FI48	FI47	FI46	FI45	FI44	FI43	FI42	FI41	FI40	FI39	FI38	FI37	FI36	FI35	FI34	FI33
X23W	FI64	FI63	FI62	FI61	FI60	FI59	FI58	FI57	FI56	FI55	FI54	FI53	FI52	FI51	FI50	FI49
X24W	FI80	FI79	FI78	FI77	FI76	FI75	FI74	FI73	FI72	FI71	FI70	FI69	FI68	FI67	FI66	FI65
X25W	FI96	FI95	FI94	FI93	FI92	FI91	FI90	FI89	FI88	FI87	FI86	FI85	FI84	FI83	FI82	FI81
X26W	FI112	FI111	FI110	FI109	FI108	FI107	FI106	FI105	FI104	FI103	FI102	FI101	FI100	FI99	FI98	FI97
X27W	FI128	FI127	FI126	FI125	FI124	FI123	FI122	FI121	FI120	FI119	FI118	FI117	FI116	FI115	FI114	FI113
Y30W	FO16	FO15	FO14	FO13	FO12	FO11	FO10	FO9	FO8	FO7	FO6	FO5	FO4	FO3	FO2	FO1
Y31W	FO32	FO31	FO30	FO29	FO28	FO27	FO26	FO25	FO24	FO23	FO22	FO21	FO20	FO19	FO18	FO17
Y32W	FO48	FO47	FO46	FO45	FO44	FO43	FO42	FO41	FO40	FO39	FO38	FO37	FO36	FO35	FO34	FO33
Y33W	FO64	FO63	FO62	FO61	FO60	FO59	FO58	FO57	FO56	FO55	FO54	FO53	FO52	FO51	FO50	FO49
Y34W	FO80	FO79	FO78	F077	FO76	FO75	FO74	FO73	FO72	FO71	FO70	FO69	FO68	FO67	FO66	FO65
Y35W	FO96	FO95	FO94	FO93	FO92	FO91	FO90	FO89	FO88	FO87	FO86	FO85	FO84	FO83	FO82	FO81
Y36W	FO112	FO111	FO110	FO109	FO108	FO107	FO106	FO105	FO104	FO103	FO102	FO101	FO100	FO99	FO98	FO97
Y37W	FO128	FO127	FO126	FO125	FO124	FO123	FO122	FO121	FO120	FO119	FO118	FO117	FO116	FO115	FO114	FO113

Internal relays

Internal		3														
Bit	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
R00W																
R01W																
R02W																
R03W																
R04W																
R05W																
R06W																
R07W																
R10W																
R11W																
R12W																
R13W																
R14W																
R14W R15W																
R16W																
R17W																
R20W	ļ		ļ	<u> </u>					ļ			ļ				
R21W			ļ													
R22W				<u></u>												ļ
R23W																
R24W																
R25W																
R26W																
R27W																
R30W																
R31W																
R32W																
R33W																
R34W																
R35W																
R36W																
R37W			 	 -												
R40W																
R41W R42W			 	 _								 				
R42W R43W	ļ		 						ļ							
	ļ		 	 					ļ							
R44W			 									 				
R45W			 	 _												
R46W	ļ		ļ	 					ļ			 				
R47W																
R50W			ļ													
R51W	ļ		ļ	<u> </u>	ļ 				ļ			 	ļ 			
R52W			ļ													ļ
R53W												<u> </u>				ļ
R54W				<u> </u>								<u> </u>				
R55W			ļ													
R56W	ļ		ļ						L			<u> </u>	ļ			
R57W																
Bit	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0

Internal relays

Bit	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
R60W																
R61W																
R62W																
R63W																
R64W																
R65W																
R66W																
R67W																
R70W																
R71W																
R72W																
R73W																
R74W																
R75W																
R76W																
R77W																

TCmini → Main unit of robot controller (G000 ~ G27F)

TCHIIII	/ 171	uni u	THE OI	1000	COIII		1001	<i>)</i> 0 ~ (<u> </u>							
Bit	F	E	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
G00W	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN							
3000	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
G01W	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN							
	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17
G02W	DIN 48	DIN 47	DIN 46	DIN 45	DIN 44	DIN 43	DIN 42	DIN 41	DIN 40	DIN 39	DIN 38	DIN 37	DIN 36	DIN 35	DIN 34	DIN 33
	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN							
G03W	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49
G04W	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN							
G04VV	116	115	114	113	112	111	110	109	108	107	106	105	104	103	102	101
G05W	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN							
	132	131	130	129	128	127	126	125	124	123	122	121	120	119	118	117
G06W	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN							
	148 DIN	147 DIN	146 DIN	145 DIN	144 DIN	143 DIN	142 DIN	141 DIN	140 DIN	139 DIN	138 DIN	137 DIN	136 DIN	135 DIN	134 DIN	133 DIN
G07W	164	163	162	161	160	159	158	157	156	155	154	153	152	151	150	149
	104	100	102	101	100	LMIT	MLT	OFS	HAND							
G10W						OFF	RST	MOD	IN8	IN7	IN6	IN5	IN4	IN3	IN2	IN1
C44\W	AL8-	AL8-	AL8-	AL8-2	AL4-	AL4-	AL4-	AL4-	AL1-							
G11W	272	271	270	69	080	079	078	077	044	043	042	041	040	039	038	037
G12W																
G13W				SV	BREA	LOW_	CYCL	STOP	EX_	RUN	ALM	DO	CYC	STEP	PRG_	STRO
01000				OFF	K	SPD	E	0101	SVON	11011	_RST	_RST	_RST	_RST	RST	BE
G14W																
~				Reserv	ed area											
G17W																
G20W	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN							
	316	315	314	313	312	311	310	309	308	307	306	305	304	303	302	301
G21W	DIN 332	DIN 331	DIN 330	DIN 329	DIN 328	DIN 327	DIN 326	DIN 325	DIN 324	DIN 323	DIN 322	DIN 321	DIN 320	DIN 319	DIN 318	DIN 317
	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN							
G22W	348	347	346	345	344	343	342	341	340	339	338	337	336	335	334	333
COOM	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN							
G23W	364	363	362	361	360	359	358	357	356	355	354	353	352	351	350	349
G24W	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN							
02400	416	415	414	413	412	411	410	409	408	407	406	405	404	403	402	401
G25W	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN							
	432 DIN	431 DIN	430 DIN	429 DIN	428 DIN	427 DIN	426	425 DIN	424 DIN	323 DIN	422 DIN	421 DIN	420 DIN	419 DIN	418 DIN	417 DIN
G26W	DIN 448	DIN 447	DIN 446	DIN 445	DIN 444	DIN 443	DIN 442	DIN 441	DIN 440	DIN 339	DIN 438	DIN 437	DIN 436	DIN 435	DIN 434	DIN 433
	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN							
G27W	464	463	462	461	460	459	458	457	456	355	454	453	452	451	450	449
Bit	F	E	D	С	В	Α	9	8	7	6	5	4	3	2	1	0

Note: G108~G10F are optional signals for specific customers.

Maill ui	_	ΙΟΟΟι					,		1371				_	_		_
Bit	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
H00W	DOUT 16	DOUT 15	DOUT 14	DOUT 13	DOUT 12	DOUT 11	DOUT 10	DOUT 9	DOUT 8	DOUT 7	DOUT 6	DOUT 5	DOUT 4	DOUT 3	DOUT 2	DOUT 1
H01W	DOUT 32	DOUT 31	DOUT 30	DOUT 29	DOUT 28	DOUT 27	DOUT 26	DOUT 25	DOUT 24	DOUT 23	DOUT 22	DOUT 21	DOUT 20	DOUT 19	DOUT 18	DOUT 17
H02W	DOUT 48	DOUT 47	DOUT 46	DOUT 45	DOUT 44	DOUT 43	DOUT 42	DOUT 41	DOUT 40	DOUT 39	DOUT 38	DOUT 37	DOUT 36	DOUT 35	DOUT 34	DOUT 33
H03W	DOUT 64	DOUT 63	DOUT 62	DOUT 61	DOUT 60	DOUT 59	DOUT 58	DOUT 57	DOUT 56	DOUT 55	DOUT 54	DOUT 53	DOUT 52	DOUT 51	DOUT 50	DOUT 49
H04W	DOUT 116	DOUT 115	DOUT 114	DOUT 113	DOUT 112	DOUT 111	DOUT 110	DOUT 109	DOUT 108	DOUT 107	DOUT 106	DOUT 105	DOUT 104	DOUT 103	DOUT 102	DOUT 101
H05W	DOUT 132	DOUT 131	DOUT 130	DOUT 129	DOUT 128	DOUT 127	DOUT 126	DOUT 125	DOUT 124	DOUT 123	DOUT 122	DOUT 121	DOUT 120	DOUT 119	DOUT 118	DOUT 117
H06W	DOUT 148	DOUT 147	DOUT 146	DOUT 145	OUT 144	DOUT 143	DOUT 142	DOUT 141	DOUT 140	DOUT 139	DOUT 138	DOUT 137	DOUT 136	DOUT 135	DOUT 134	DOUT 133
H07W	DOUT 164	DOUT 163	DOUT 162	DOUT 161	DOUT 160	DOUT 159	DOUT 158	DOUT 157	DOUT 156	DOUT 155	DOUT 154	DOUT 153	DOUT 152	DOUT 151	DOUT 150	DOUT 149
H10W							MLT END	OFS END	HAND OUT8	HAND OUT7	HAND OUT6	HAND OUT5	HAND OUT4	HAND OUT3	HAND OUT2	HAND OUT1
H11W									SEQ PAR8	SEQ PAR7	SEQ PAR6	SEQ PAR5	SEQ PAR4	SEQ PAR3	SEQ PAR2	SEQ PAR1
H12W																
H13W		EXT ETHER	ALARM	BT_ ALM	CYC _ST	LOW _ST	CYC _END	AUTO RUN	SYS_ RDY	EXT 232C	EXT SIG	INT	TEAC H	ACK	SV_ RDY	EMG_ ST
H14W ~				Reserv	ed area											
H17W	50.15	5 O							5011							
H20W	DOUT 316	315	314	313	DOUT 312	DOUT 311	310	309	308	DOUT 307	306	305	DOUT 304	303	DOUT 302	DOUT 301
H21W	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT
	332	331	330	329	328	327	326	325	324	323	322	321	320	319	318	317
H22W	DOUT 348	DOUT 347	DOUT 346	DOUT 345	OUT 344	DOUT 343	DOUT 342	DOUT 341	DOUT 340	DOUT 339	DOUT 338	DOUT 337	DOUT 336	DOUT 335	DOUT 334	DOUT 333
	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	DOUT
H23W	364	363	362	361	360	359	358	357	356	355	354	353	352	351	350	349
H24W	DOUT 416	DOUT 415	DOUT 414	DOUT 413	DOUT 412	DOUT 411	DOUT 410	DOUT 409	DOUT 408	DOUT 407	DOUT 406	DOUT 405	DOUT 404	DOUT 403	DOUT 402	DOUT 401
H25W	DOUT 432	DOUT 431	DOUT 430	DOUT 429	DOUT 428	DOUT 427	DOUT 426	DOUT 425	DOUT 424	DOUT 323	DOUT 422	DOUT 421	DOUT 420	DOUT 419	DOUT 418	DOUT 417
H26W	DOUT 448	DOUT 447	DOUT 446	DOUT 445	DOUT 444	DOUT 443	DOUT 442	DOUT 441	DOUT 440	DOUT 339	DOUT 438	DOUT 437	DOUT 436	DOUT 435	DOUT 434	DOUT 433
H27W	DOUT 464	DOUT 463	DOUT 462	DOUT 461	DOUT 460	DOUT 459	DOUT 458	DOUT 457	DOUT 456	DOUT 355	DOUT 454	DOUT 453	DOUT 452	DOUT 451	DOUT 450	DOUT 449
Bit	F	E	D	С	В	Α	9	8	7	6	5	4	3	2	1	0

Note: R508~R50F are optional signals for specific customers.

Bit	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
E00W																
E01W																
E02W																
E03W																
E04W																
E05W																
E06W																
E07W						i			Edgo	relays		i	i	i		
E10W						ı 1	1	1 1	Luge •	i Ciays I	ì	ı	ı			
E11W																
E12W																
E13W																
E14W																
E15W																
E16W																
E17W																
L00W																
L01W																
L02W																
L03W						1			Lotob	rolovo		Ì	İ	Ì		
L04W						1 1	ì	1	Laten	relays	Ī	i				
L05W																
L06W																
L07W																
T/C00W																
T/C01W								Timor	. (100 :	ma)/aai	ıntoro	I	l			
T/C02W							İ	rimers	s (1001 •	ms)/coi	unters	i				
T/C03W																
T/C04W																
T/C05W																
T/C06W																
T/C07W																
T/C08W																
T/C09W								—	// ^	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			l			
T/C10W						<u> </u>		Time	rs (10 i	ms)/co	unters					
T/C11W																
T/C12W																
T/C13W																
T/C14W																
T/C15W																
T/C16W																
T/C17W																

•																
Bit	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
T/C20W																
T/C21W																
T/C22W																
T/C23W								Tin	ners (10)() ms)	/counte	re		•		
T/C24W							Ī	' '''' I	ICIS (11	JO 1113 <i>),</i> I	ı	,13 I	Ī			
T/C25W																
T/C26W																
T/C27W																
A00W									Sign flag	Zero flag				Over- flow		Carry flag
A01W										Fuse flag						
A02W																
A03W	6400 ms	3200 ms	1600 ms	800 ms	400 ms	200 ms	100 ms	50 ms			Ş	Scan tir	me (ms	s)		
A04W	12800 ms	6400 ms	3200 ms	1600 ms	800 ms	400 ms	200 ms	100 ms	1280 ms	640 ms	320 ms	160 ms	80 ms	40 ms	20 ms	10 ms
A05W	1280 s	640 s	320 s	160 s	80 s	40 s	20 s	10 s	128 s	64 s	32 s	16 s	8 s	4 s	2 s	1 s

– 11-7 –

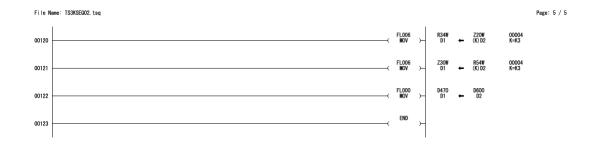
List of Registers

Register	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
D00*																
D01*																
D02*								Data re	egisters							
D03*								Dala 16	gisters	_						
D04*																
D05*																
D06*																
D07*																
D10*																
D11*																
D12*							_	Data re	egisters	. –						
D13*								<u> </u>		- 						
D14*																
D15*																
D16*																
D17*																
D20*																
D21*																
D22*							<u> </u>	Data re	egisters	. –						
D23* D24*								1								
D24 D25*																
D25*																
D27*																
D30*																
D30*																
D31*																
D32*							<u> </u>	ļ			<u> </u>	!				
D34*						_	Da	ıta regi	sters (b	ackup)					
D35*																
D36*																
D37*																
D3/ "																

Register	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
		•				•			PLC							
D40*									DATA R8	DATA R7	DATA R6	DATA R5	DATA R4	DATA R3	DATA R2	DATA R1
D41*			1	Reserv	ed area	а			110	187	110		114		1\2	IXI
D42*																
D43*																
D44*																
D45*			I	Reserv	ed area	a										
D46*																
D47*																USER
D50*																
D51*																
D52*																
D53*				D		_										
D54*				Reserv	ed are	а										
D55*																
D56*																
D57*																
									PLC							
D60*									DATA W8	DATA W7	DATA W6	DATA W5	DATA W4	W3	W2	DATA W1
D61*				Rasarv	ed are	2										
D62*			,	i (C3Ci v	eu aie	a			PSN _W8	PSN_ W7	PSN_ W6	PSN_ W5	PSN_ W4	PSN_ W3	PSN_ W2	PSN_ W1
D63*									PSN	PSN_						
D03									_J8	J7	J6	J5	J4	J3	J2	J1
D64*									TRQ_ J8	TRQ_ J7	TRQ_ J6	TRQ_ J5	TRQ_ J4	TRQ_ J3	TRQ_ J2	TRQ_ J1
D65*			Reserved area AL09 AL08 AL07 AL06 AL05 AL04 Reserved area													
D66*		1	AL09 AL08 AL07 AL06 AL05 AL0								ALN	STE]			
D67*	AL10	AL09	AL09 AL08 AL07 AL06 AL05 AL0						AL02	AL01	0	P				
D70*																
D71*																
D72*																
D73*				Reserv	ed are	а										
D74*																
D75* D76*																
D77*																
Register	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0

Register	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
P00*																
P01*						T:			100)	/		4	1			
P02*						ilmer c	urrent v	alues (100 ms)	counte	r curren	t values				
P03*																
P04*																
P05*																
P06*																
P07*																
P10*																
P11*					1	imer cu	rrent va	lues (10	ms)/cc	unter c	urrent v	alues				
P12*									1113//00		ı.	1000				
P13*																
P14*																
P15*																
P16*																
P17*																
P20*																
P21*																
P22*																
P23*					1	imer cu	rrent va	lues (10) ms)/cc	ounter c	urrent v	alues —				
P24*							va			Jantoi O						
P25*																
P26*																
P27*																
Register	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0

Standard ladder sequence program


0000	X000 1 I	G000	
0000		DIN1	
0001	X001 1 1 IIIZ	G001 − DIN2	
0002	X002 	G002	
		D1N3 G003	
0003	X003 I	DIN4	
0004	X004 1 1/15	G004 DIN5	
0005	X005 1 1	G005	
0000		DIN6	
0006	X006 IN7	G006 DIN7	
0007	X007 1	G007	
		G008	
8000	XOO8	DIN9	
0009	X009 1	G009 DIN10	
0010	X00A 	G00A	
		DIN11 GOOB	
0011	X008 	DIN12	
0012	x00C 1	GOOC DIN13	
0013	x00p	GOOD	
0010		DIN14	
0014	XOCE INTS	GOOE DIN15	
0015	XOOF INTE	GOOF DIN16	
0016	X010 ———————————————————————————————————	G010	
0010		DIN17	
0017	XD11 ———————————————————————————————————	G011 ← DIN18	
0018	X012	G012 -(DIN19	
		G013	
0019	X013 1 IN20	DIN20	
0020	X014 ————————————————————————————————————	G014 OIN21	
0021	X015 1	G015	
		DIN22 G016	
0022	X016 	DIN23	
0023	X017 1 1/1824	G017 TIN24	
0024	X018 	G018	
		DIN25 G019	
0025	X019 	DIN26	
0026	X01A 1	G01A DIN27	
0027	X018 ————————————————————————————————————	G01B	
00Z1		DIN28	
0028	X01C IN29	G01C DIN29	
0029	X01D 11 14	G01D	

Page: 2 / 5

File Name: TS3KSEQ02.tsq DIN31 00031 G020 DIN33 00033 DIN34 G135 00034 G130 STROBE PRG_RST G132 00037 STEP_RST G133 CYC_RST 00039 DO_RST G136 00040 G137 EX_SVON 00042 G139 00043 CYCLE G13B BREAK 00045 G13C SV0FF G030 DIN49 G032 DIN51 DIN52 G035 DIN54 DIN55 G100 HANDIN1 G103 HANDIN4 HANDIN5 File Name: TS3KSEQ02.tsq 00060 G106 HANDIN7 G107 HANDINS OUT2 HOO2 DOUT3 OUT3 Y103 Y104 OUT5 HOO5 DOUT6 H006 DOUT7 Y106 H007 DOUT8 8TUO HOO8 DOUT9 00071 H009 D0UT10 Y109 00072 OUT10 HOOA DOUT11 Y10A 0UT11 HOOB DOUT12 00074 HOOC DOUT13 Y100 OUT13 HOOD DOUT14 Y10D 00076 OUT14 HOOE DOUT15 00077 HOOF DOUT16 Y10F OUT16 H010 D0UT17 00079 0UT17 H011 D0UT18 00080 H012 D0UT19 Y112 OUT19 H013 D0UT20 0UT20 H014 D0UT21 Y114 0UT21 H015 D0UT22 Y115 OUT22 H016 H017 D0UT24 Y117 OUT24 H018 D0UT25 Y118 **OUT25** H019 D0UT26 H01A DOUT27 Y11A OUT27

Page: 3 / 5

File Name: TS3KSEQ02.tsq OUT28 Y11C OUT29 Y11D OUT30 00093 OUT31 Y11F OUT32 Y120 UF01 00096 Y126 OUT39 Y127 OUT40 00099 Y129 OUT42 Y12A 00101 OUT43 00102 Y12C **OUT45** Y12D 00104 OUT46 Y12E 00105 Y12F OUT48 00107 Y131 00108 Y138 00110 00111 00112 00113 Y13D 00114 Y13E 00116 00004 K=K3 00117 H04W (K) D2 00004 K=K3 00118 00119

APPROVED BY:	
CHECKED BY:	
CHECKED DI.	
PREPARED BY:	